Analisis Data Transaksi Penjualan Obat di Apotek X Samarinda Menggunakan Algoritma Apriori dan FP-Growth Berbasis Association Rule Mining
Analysis of Drug Sales Transaction Data at Pharmacy X Samarinda Using Apriori and FP-Growth Algorithms Based on Association Rule Mining
DOI:
https://doi.org/10.25026/jsk.v6i3.2353Keywords:
association rule, apriori, apotekAbstract
Association Rule Mining is a data mining technique that is used to search for a group of items that often appear together in an event and is often analogous to a market basket. Algorithms in the association rule include apriori and frequent pattern growth (fp-growth). We can apply these two algorithms in various fields, one of which is in the pharmaceutical sector, namely related to drug sales transactions in pharmacies. The aim of this research is to see a picture of drug sales transactions at Pharmacy X, Samarinda City, and to find out the best algorithm for determining drug sales transaction patterns at the pharmacy. Based on the results of the analysis, information was obtained that out of 100 drug sales transactions at Pharmacy The product that consumers purchased the most was the ChargeR type of medicine, namely 7 transactions and the one that was purchased the least was Grape Tempra Syrup 60 ml which was purchased in only 1 transaction, and seen from the higher support and confidence values, the fp-growth algorithm could produce rules better to the apriori algorithm.
Keywords: association rule, fp-growth algorithm, apriori algorithm, pharmacies
Abstrak
Association Rule Mining merupakan teknik data mining untuk menemukan aturan asosiasi antara suatu kombinasi item. Algoritma dalam Association Rule dapat diterapkan diberbagai bidang, salah satunya adalah bidang farmasi terkait transaksi penjualan obat di Apotek, adapun algoritma tersebut adalah Apriori dan Frequent pattern Growth (Fp-Growth). Tujuan penelitian ini adalah untuk melihat gambaran transaksi penjualan obat di Apotek X Kota Samarinda, dan mengetahui algoritma terbaik dalam menentukan pola transaksi penjualan obat di apotek tersebut. Berdasarkan hasil analisis diperoleh informasi bahwa dari 100 transaksi penjualan obat di Apotek X kota Samarinda, obat yang paling banyak terjual dalam 1 transaksi terdapat pada transaksi ke 41 dengan jenis obat sebanyak 17 jenis. Produk yang paling banyak dibeli konsumen adalah jenis obat ChargeR yaitu sebanyak 7 transaksi dan yang paling sedikit dibeli adalah Sirup Tempra Anggur 60 ml yang dibeli hanya dalam 1 transaksi, dan dilihat dari nilai support dan confident yang lebih tinggi algoritma fp-growth mampu menghasilkan aturan algoritma yang lebih baik dibandingkan dengan algoritma apriori.
Kata Kunci: association rule, apriori, frequent pattern growth, apotek
References
H. Lan, X. Ma, L. Ma, and W. Qiao, “Pattern investigation of total loss maritime accidents based on association rule mining,” Reliab. Eng. Syst. Saf., vol. 229, p. 108893, 2023.
T. A. Kumbhare and S. V Chobe, “An overview of association rule mining algorithms,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 1, pp. 927–930, 2014.
N. Ritha, E. Suswaini, and W. Pebriadi, “Penerapan Association Rule Menggunakan Algoritma Apriori Pada Poliklinik Penyakit Dalam (Studi Kasus: Rumah Sakit Umum Daerah Bintan),” J. Sains dan Inform., vol. 7, no. 2, pp. 222–230, 2021.
M. M. Hassan et al., “An efficient Apriori algorithm for frequent pattern in human intoxication data,” Innov. Syst. Softw. Eng., vol. 19, no. 1, pp. 61–69, 2023.
M. Al-Maolegi and B. Arkok, “An improved Apriori algorithm for association rules,” arXiv Prepr. arXiv1403.3948, 2014.
R. D. Purnama, “Implementasi Algoritma Apriori Pada Penyebab Kematian Bayi.” Universitas Hasanuddin, 2021.
A. A. Aldino, E. D. Pratiwi, S. Sintaro, and A. D. Putra, “Comparison of market basket analysis to determine consumer purchasing patterns using fp-growth and apriori algorithm,” in 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 2021, pp. 29–34.
D. Listriani, A. H. Setyaningrum, and F. Eka, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Analisa Pola Belanja Konsumen (Studi Kasus Toko Buku Gramedia Bintaro),” J. Tek. Inform., vol. 9, no. 2, 2016.
C. Wang and X. Zheng, “Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint,” Evol. Intell., vol. 13, no. 1, pp. 39–49, 2020.
N. Krisdianto and A. M. Arymurthy, “Improved Apriori Berbasis Matrix Dengan Incremental Database Untuk Market Basket Analysis,” in Prosiding Seminar Nasional Ilmu Komputer, Universitas Diponegoro, 2012.
P. N. Harahap, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT. Arma Anugerah Abadi Cabang Sei Rampah),” MATICS J. Ilmu Komput. dan Teknol. Inf. (Journal Comput. Sci. Inf. Technol., vol. 11, no. 2, pp. 46–50, 2019.
S. Styawati, A. Nurkholis, and K. N. Anjumi, “Analisis Pola Transaksi Pelanggan Menggunakan Algoritme Apriori,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, pp. 619–626, 2021.
A. Padillah, H. S. Tambunan, and R. A. Nasution, “Application of the FP-Growth Algorithm in Analyzing Patterns and Layout of Foodstuffs,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 4, pp. 325–336, 2022.
I. A. Junizar, A. Pauji, M. A. Pratama, and C. L. Rohmat, “Penerapan Algoritma FP Growth terhadap Transakasi Pembelian Bahan Baku,” KOPERTIP Sci. J. Informatics Manag. Comput., vol. 4, no. 1, pp. 7–13, 2020.
E. Sofianti and S. Defit, “Mining Data In Identification Of Consumer Patterns Of Agricultural Machine Sales Using Fp-Growth Algorithm,” Systematics, vol. 2, no. 3, pp. 144–156, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.