Artikel Review : Polimer Tercetak Ion untuk Pemisahan Logam Tanah Jarang (Sintesis dan Karakterisasi)

Review Article: Ion Imprinted Polymers for Separation of Rare Earth Metals (Synthesis and Characterization)

Authors

  • Syelena Prima Putri Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Kabupaten Sumedang, Indonesia, 45363
  • Uji Pratomo Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Kabupaten Sumedang, Indonesia, 45363
  • Retna Putri Fauziah Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Kabupaten Sumedang, Indonesia, 45363
  • Husein Hernadi Bahti Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Kabupaten Sumedang, Indonesia, 45363
  • Santhy Wyantuti Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Kabupaten Sumedang, Indonesia, 45363 https://orcid.org/0000-0002-4382-8372

Abstract

Rare earth metals (LTJ) are potential prospects that are widely applied in high technology such as cellphones, computer hard disks, solar cells, electric cars, musical instrument components, spacecraft manufacturing, defense industry. The use of REEs relies on their chemical, catalytic, electrical, magnetic and optical properties. In addition, the similar chemical and physical properties of rare earth metals make their separation very difficult and complicated, so appropriate and selective alternative separation methods are needed to obtain pure rare earth metals. One of the separation methods used is solid phase extraction using ion-imprinted polymer (IIP) adsorbents. IIP has the ability to adsorb with high selectivity because it stores the memory effect of the washed template ions. In this review article, an overview of various IIP syntheses for REE separation will be presented. It is hoped that this article can be a reference for research on IIP synthesis, especially for REEs.

Keywords:          Ion Imprinted Polymer, Rare Earth Metals (REEs), and IIP Synthesis

 

Abstrak

Logam tanah jarang (LTJ) merupakan prospek potensial yang banyak diaplikasikan pada teknologi tinggi seperti handphone, hard disk komputer, sel surya, mobil listrik, komponen perangkat alat musik, pembuatan pesawat luar angkasa industri pertahan. Penggunaan LTJ mengandalkan sifat kimia, katalitik, listrik, magnet, dan optiknya. Selain itu, sifat kimia dan fisika yang mirip pada logam tanah jarang membuat pemisahannya sangat sulit dan rumit, maka diperlukan metode pemisahan alternatif yang tepat serta selektif untuk mendapatkan logam tanah jarang yang murni. Salah satu metode pemisahan yang digunakan adalah ekstraksi fase padat menggunakan adsorben polimer tercetak ion (IIP). IIP memiliki kemampuan mengadsorpsi dengan selektivitas tinggi karena menyimpan memory effect dari ion template yang dicuci. Dalam artikel review ini, akan dipaparkan gambaran umum mengenai berbagai sintesis IIP untuk pemisahan LTJ. Artikel ini diharapkan dapat menjadi referensi untuk penelitian mengenai sintesis IIP terutama untuk LTJ.

Kata Kunci:         Polimer Tercetak Ion, Logam Tanah Jarang (LTJ) dan Sintesis IIP

References

Ali, I. M., Zakaria, E. S., Khalil, M., El-Tantawy, A., & El-Saied, F. A. 2022. Synthesis of ion-imprinted polymers based on chitosan for high selectivity of La (III), Ce (III) and Sm (III) via solid phase extraction. Journal of Molecular Liquids, 356, 119058.

Budiman, S., Bahti, H. H., Mutalib, A. dan Anggraeni, A. 2018. Pemisahan Gadolinium Sebagai Contrast Agent pada MRI (Magnetic Resonance Imaging) dengan Ligan Asam di-(2-etilheksil)fosfat (D2EHPA) dan tributilfosfat (TBP) secara Ekstrasi Cair-Cair dengan Pelarut Organik –Kerosin. Jurnal Sains dan Kesehatan, 1 (9).

Iyad, N., Ahmad, M. S., Alkhatib, S. G., & Hjouj, M. 2023. Gadolinium contrast agents-challenges and opportunities of a multidisciplinary approach: Literature review. European Journal of Radiology Open, 11, 100503.

Cao, Y., Xu, L., Kuang, Y., Xiong, D., & Pei, R. 2017. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B, 5(19), 3431-3461.

Puteri, J., Anggraeni, A., Hardianto, A. dan Bahti, H. H. 2023. Oksidasi Serium Berdasarkan Agen Pengoksidasi. Jurnal Sains dan Kesehatan, 5 (3).

Wang, Q., Wang, B., Shi, D., Li, F., & Ling, D. 2023. Cerium Oxide Nanoparticles?Based Optical Biosensors for Biomedical Applications. Advanced Sensor Research, 2(3), 2200065.

Charbgoo, F., Ramezani, M., & Darroudi, M. 2017. Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosensors and Bioelectronics, 96, 33-43.

Poedjomartono, B. 2009. Bone Pain Palliative Therapy: The Role of Samarium (Sm)-153 in Bone Metastatic Tumor. Indonesian Journal of Cancer, 3(2).

Vermeulen, K., Van de Voorde, M., Segers, C., Coolkens, A., Rodriguez Pérez, S., Daems, N., & Ooms, M. 2022. Exploring the Potential of High-Molar-Activity Samarium-153 for Targeted Radionuclide Therapy with [153Sm] Sm-DOTA-TATE. Pharmaceutics, 14(12), 2566.

Nabeel, A. I. 2020. Samarium enriches antitumor activity of ZnO nanoparticles via downregulation of CXCR4 receptor and cytochrome P450. Tumor Biology, 42(3), 1010428320909999.

Zhao, L., Wang, S., Liu, H., Dua, X., Bu, R., Li, B., Han, R., Gao, J., Liu, Y., Hao, J., Zhao, J., Meng, Y. dan Li, Gi. 2021. The Pharmacological Effect and Mechanism of Lanthanum Hydroxide on Vascular Calcification Caused by Chronic Renal Failure Hyperphosphatemia. Front. Cell Dev. Biol., vol. 9

Sholihah, I., Santoso, J., & Rahardjoputro, R. 2023. Gambaran Penggunaan Pengikat Fosfat pada Pasien Penyakit Ginjal Kronik dengan Hemodialisis. INPHARNMED Journal (Indonesian Pharmacy and Natural Medicine Journal), 6(2), 91-97.

Yuksel, C., Ankarali, S. dan Yuksel, N. A. 2018. The use of neodymium magnets in healthcare and their effects on health. North. Clin. Istanbul, 5 (3)

Strelow, F. W. E., & Victor, A. H. 1990. Separation of yttrium and neodymium from samarium and the heavier lanthanides by cation-exchange chromatography with hydroxyethylenediaminetriacetate in monochloroacetate buffer. Talanta, 37(12), 1155-1161.

Torkaman, R., Moosavian, M. A., Torab-Mostaedi, M., & Safdari, J. 2013. Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy, 137, 101-107.

Khalil, M., Madbouly, H. A., Elgoud, E. A., & Ali, I. M. 2022. Removal of Ce (IV) and Nd (III) from acidic solution using polyacrylonitrile-encapsulated lithium titanium vanadate as an efficient adsorbent. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1370-1380.

Balaram, V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.

Bunina, Z. Y., Bryleva, K., Yurchenko, O., & Belikov, K. 2017. Sorption materials based on ethylene glycol dimethacrylate and methacrylic acid copolymers for rare earth elements extraction from aqueous solutions. Adsorption Science & Technology, 35(5-6), 545-559.

Izzataddini, A., Nurani, D. A., Utami, D., Cahyana, A. H. and Sumardi. 2019. Preparasi dan karakterisasi ion imprinted polymer untuk pemisahan selektif logam Cr(III) dalam air = Preparation and characterization of an ion imprinted polymer for selective separation of Cr(III) ions from water. Skripsi Universitas Indonesia

Luo, F., Huang, S., Xiong, X. dan Lai, X. 2015. Synthesis and characterization of Hg(ii)-ion-imprinted polymer and its application for the determination of mercury in water samples. RSC Adv., 5, 67365.

Rammika, M. 2010. an ion imprinted polymers for the determination of Ni (II) ions from mine tailing sample a thasis. Rhodes University.

Nik Mustapa, N. R., Malek, N. F. A., Yusoff, M. M., & Rahman, M. L. 2016. Ion imprinted polymers for selective recognition and separation of lanthanum and cerium ions from other lanthanide. Separation Science and Technology, 51(17), 2762-2771.

Ibrahim, S., Kamal, N. S. S., Hanafiah, M. A. K. M., Ariff, N. F. M., & Saleh, S. H. 2021. Chitosan-Lignin Composite for Recovery of Lanthanum (III) Ions from Aqueous Solutions. Malaysian Journal of Analytical Sciences, 25(5), 848-857.

Rahman, M. L., Puah, P. Y., Sarjadi, M. S., Arshad, S. E., Musta, B., & Sarkar, S. M. 2019. Ion-Imprinted Polymer for Selective Separation of Cerium (III) Ions from Rare Earth Mixture. Journal of nanoscience and nanotechnology, 19(9), 5796-5802.

Aljohani, M. S., Alnoman, R. B., Alharbi, H. Y., Bukhari, A. A., & Monier, M. 2023. Development and evaluation of thiosalicylic-modified/ion-imprinted chitosan for selective removal of cerium (III) ion. Carbohydrate Polymers, 121620.

Zheng, X., Zhang, Y., Bian, T., Zhang, Y., Li, A., & Pan, J. 2020. Oxidized carbon materials cooperative construct ionic imprinted cellulose nanocrystals films for efficient adsorption of Dy(III). Chemical Engineering Journal, 381, 122669.

Liu, E., Lin, X., Zhang, D., Xu, W., Shi, J., & Hong, Y. 2021. Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd (iii). New Journal of Chemistry, 45(2), 725-734.

Yusoff, M. M., Mostapa, N. R. N., Sarkar, M. S., Biswas, T. K., Rahman, M. L., Arshad, S. E. & Kulkarni, A. D. 2017. Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals. Journal of Rare Earths, 35(2), 177-186.

Masoumi, F., Sarabadani, P., & Khorrami, A. R. 2019. Synthesis, characterization and application of a new nano-structured samarium (III) ion-imprinted polymer. Polymer Bulletin, 76, 5499-5516.

Li, Y., Tian, J., Li, Y., He, H., Deng, X., Li, W. & Hu, G. 2023. Cross-linking copolymerization on magnetic microspheres surface induced neodymium ion imprinting for high capacity and high selectivity removal of Nd3+ from aqueous solution. Surfaces and Interfaces, 43, 103587.

Moussa, M., Ndiaye, M. M., Pinta, T., Pichon, V., Vercouter, T., & Delaunay, N. 2017. Selective solid phase extraction of lanthanides from tap and river waters with ion imprinted polymers. Analytica chimica acta, 963, 44-52.

Gawin, M., Knefal, J., Trzewik, B., Walas, S., Tobiasz, A., Mroweic, H. dan Eitek, E. 2010. Preparation of a New Cd(II)-Imprinted Polymer and Its Application to Determination of Cadmium(II) Via Flow-InjectionFlame Atomic Absorption Spectrometry. Talanta., 80, pp. 1305-1310

Kusumkar, V.V., Galambos, M., Viglasova, E., Dano, M. and Smelkova, J. 2021. Ion-imprinted polymers: Synthesis, characterization, and adsorption of radionuclides. Materials, 14(5), pp. 1–29.

Meng, H., Li, Z., Ma, F., Jia, L., Wang, X., Zhou, W. and Zhang, L. 2015. Preparation and Characterization of Surface Imprinted Polymer for Selective Sorption of Uranium (VI). J. Radioanal. Nucl. Chem., 306, 139–146.

Mafu, L.D., Mamba, B.B. and Msagati, T.A.M. 2016. Synthesis and Characterization of Ion Imprinted Polymeric Adsorbents for the Selective Recognition and Removal of Arsenic and Selenium in Wastewater Samples. J. Saudi Chem. Soc., 20, 594–605.

Cai, X., Li, J., Zhang, Z., Yang, F., Dong, R. and Chen, L. 2014. Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples. ACS Appl. Mater. Interfaces, 6, 305–313

Rodríguez-Fernández, R., Peña-Vázquez, E. and Bermejo-Barrera, P. 2015. Synthesis of an Imprinted Polymer for the Determination of Methylmercury in Marine Products. Talanta, 144, 636–641.

Jinadasa, K.K., Peña-Vázquez, E., Bermejo-Barrera, P. and Moreda-Piñeiro, A. 2020. Ionic Imprinted Polymer Solid-Phase Extraction for Inorganic Arsenic Selective Pre-Concentration in Fishery Products before High-Performance Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry Speciation. J. Chromatogr. A, 1619, 460973.

Yordanova, T., Dakova, I., Balashev, K. and Karadjova, I. 2014. Polymeric Ion-Imprinted Nanoparticles for Mercury Speciation in Surface Waters. Microchem. J., 113, 42–47.

Branger, C., Meouche, W., & Margaillan, A. 2013. Recent advances on ion-imprinted polymers. Reactive and Functional Polymers, 73(6), 859-875.

Rammika, M., Darko, G. and Torto, N. 2012. Optimal Synthesis of a Ni (II)-Dimethylglyoxime Ion-Imprinted Polymer for the Enrichment of Ni (II) Ions in Water, Soil and Mine Tailing Samples. Water SA, 38, 261–268.

Ji, X. Z., Liu, H. J., Wang, L. L., Sun, Y. K., & Wu, Y. W. 2013. Study on adsorption of Th (IV) using surface modified dibenzoylmethane molecular imprinted polymer. Journal of Radioanalytical and Nuclear Chemistry, 295, 265-270.

Monier, M., Abdel-Latif, D. A., & Youssef, I. 2018. Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. Journal of colloid and interface science, 513, 266-278.

Liu, Y., Meng, X., Luo, M., Meng, M., Ni, L., Qiu, J. & Yan, Y. 2015. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution. Journal of Materials Chemistry A, 3(3), 1287-1297.

Wyantuti, S., Pratomo, U., Hartati, Y. W., Anggraeni, A., & Bahti, H. H. 2018. Fast and simultaneous detection of Sm, Eu, Gd, Tb and Dy using combination of voltammetry method and multivariate analysis. Res. J. Chem. Environ, 22, 302-306.

Wyantuti, S., Pratomo, U., Hartati, Y. W., Shafira, A., Hardianto, A., & Bahti, H. H. 2023. Utilization of Steepest Ascent and Box-Behnken Design for Determination of Gadolinium in Acetonitrile by Differential Pulse Voltammetry. Indonesian Journal of Chemistry. 23 (5), 1261 – 1269.

Nugroho, A., Kriswarini, R., Fatimah, S., & Haryati, I. 2018. PENENTUAN UNSUR-UNSUR DI DALAM BIJIH URANIUM MENGGUNAKAN ICP AES PLASMA 40. In SEMINAR NASIONAL XI SDM TEKNOLOGI NUKLIR (pp. 50-60). Sekolah Tinggi Teknologi Nuklir-Badan tenaga Nuklir Nasional Yogyakarta.

Sherry. A. D., Caravan, P. and Lenkinski, R. E. 2009. A Primer on Gadolinium Chemistry. Journal of magnetic resonance imaging : JMRI, 30(6), 1248.

Handoko, C. R. 2018. Pemanfaatan Low Speed Neodymium Wind Turbine Generator Sebagai Alternatif Sumber Listrik Rumah Kawasan Pesisir. In Seminar MASTER PPNS Vol. 3(1), pp. 139-146.

Khoshnam, M., & Salimijazi, H. 2021. Synthesis and characterization of magnetic-photocatalytic Fe3O4/SiO2/a-Fe2O3 nano core-shell. Surfaces and Interfaces, 26, 101322.

Downloads

Published

2024-10-31

How to Cite

Putri, S. P., Pratomo, U., Fauziah, R. P., Bahti, H. H., & Wyantuti, S. (2024). Artikel Review : Polimer Tercetak Ion untuk Pemisahan Logam Tanah Jarang (Sintesis dan Karakterisasi): Review Article: Ion Imprinted Polymers for Separation of Rare Earth Metals (Synthesis and Characterization). Jurnal Sains Dan Kesehatan, 6(5), 808–819. Retrieved from https://jsk.jurnalfamul.com/index.php/jsk/article/view/2324

Most read articles by the same author(s)