Peningkatan Skala Sintesis Nanopartikel Gadolinium dengan Metode Hidrotermal sebagai Senyawa Pengontras MRI
Scaled-up Synthesis of Gadolinium Nanoparticles by Hydrothermal Method as MRI Contrast Agent
Abstract
Magnetic resonance imaging (MRI) has become one of the most powerful medical imaging techniques in the early diagnosis of diseases to reduce the high mortality of cancer. A contrast agent is required to enhance the contrast between the lesion tissue and healthy tissue. Gadolinium nanoparticles have been a development strategy for gadolinium chelate-based MRI contrast compounds. Nanoparticles offer several advantages such as lower toxicity and high stability, as well as allowing better control of surface properties and dose reduction to enhance contrast in MRI images. This study focuses on the scale-up of gadolinium nanoparticle synthesis by hydrothermal method based on previous optimised results. The gadolinium nanoparticles were coated with PEG polymer for the purpose of colloidal stability and good biocompatibility. The gadolinium nanoparticles shows a spherical with an average hydrodynamic diameter of 11.4 nm. Comprehensive characterisation was conducted to evaluate and confirm gadolinium nanoparticles can be used as candidate MRI contrast agents.
Keywords: Contrast Agent, Gadolinium Nanoparticle, PEG, and Scale-up
Abstrak
Magnetic Resonance Imaging (MRI) menjadi salah satu pencitraan medis yang paling unggul dalam diagnosis dini penyakit guna menekan tingginya mortalitas akibat kanker. Senyawa pengontras diperlukan untuk meningkatkan kontras antara jaringan lesi dan jaringan sehat. Nanopartikel gadolinium telah menjadi strategi pengembangan senyawa pengontras MRI berbasis gadolinium kelat. Nanopartikel menawarkan beberapa keuntungan berupa toksisitas yang lebih rendah dan stabilitas yang tinggi, serta memungkinkan kontrol yang lebih baik terhadap sifat permukaan dan pengurangan dosis untuk meningkatkan kontras pada gambar MRI. Penelitian ini berfokus kepada peningkatan skala sintesis nanopartikel gadolinium dengan metode hidrotermal berdasarkan hasil optimal sebelumnya. Nanopartkel gadolinium dilapisi polimer PEG untuk keperluan stabilitas koloid dan biokompatibilitas yang baik. Nanopartikel gadolinium hasil sintesis berbentuk bulat dengan rata-rata diameter sebesar 11.4 nm. Karakterisasi komprehensif dilakukan untuk mengevaluasi dan memastikan nanopartikel gadolinium dapat digunakan sebagai kandidat senyawa pengontras MRI.
Kata Kunci: Senyawa Pengontras, Nanopartikel Gadolinium, PEG, dan Peningkatan Skala
References
[1] M. Y. Ahmad et al., “In vivo positive magnetic resonance imaging applications of poly(methyl vinyl ether-alt-maleic acid)-coated ultra-small paramagnetic gadolinium oxide nanoparticles,” Molecules, vol. 25, no. 5, Mar. 2020, doi: 10.3390/molecules25051159.
[2] Z. Li, J. Guo, M. Zhang, G. Li, and L. Hao, “Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging,” vol. 10, no. February, pp. 1–10, 2022, doi: 10.3389/fchem.2022.837032.
[3] A. Fatima et al., “Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications,” pp. 1–23, 2021.
[4] T. Tegafaw et al., “Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents,” Pharmaceutics, vol. 15, no. 6. Multidisciplinary Digital Publishing Institute (MDPI), Jun. 01, 2023. doi: 10.3390/pharmaceutics15061745.
[5] D. González-Mancebo et al., “Design of a nanoprobe for high field magnetic resonance imaging, dual energy X-ray computed tomography and luminescent imaging,” J Colloid Interface Sci, vol. 573, pp. 278–286, Aug. 2020, doi: 10.1016/j.jcis.2020.03.101.
[6] S. Marasini et al., “Polyaspartic acid-coated paramagnetic gadolinium oxide nanoparticles as a dual-modal t1 and t2 magnetic resonance imaging contrast agent,” Applied Sciences (Switzerland), vol. 11, no. 17, Sep. 2021, doi: 10.3390/app11178222.
[7] S. L. Ho et al., “In vivo neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability,” RSC Adv, vol. 10, no. 2, pp. 865–874, 2019, doi: 10.1039/c9ra08961f.
[8] J. Lv, S. Roy, M. Xie, X. Yang, and B. Guo, “Contrast Agents of Magnetic Resonance Imaging and Future Perspective,” Nanomaterials, vol. 13, no. 13. Multidisciplinary Digital Publishing Institute (MDPI), Jul. 01, 2023. doi: 10.3390/nano13132003.
[9] R. Marasini, T. D. Thanh Nguyen, and S. Aryal, “Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 12, no. 1. Wiley-Blackwell, Jan. 01, 2020. doi: 10.1002/wnan.1580.
[10] M. Salehipour, S. Rezaei, J. Mosafer, Z. Pakdin-parizi, and A. Motaharian, “Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents,” 2021.
[11] W. Cai et al., “Engineering the surface of Gd2O3 nanoplates for improved T1-weighted magnetic resonance imaging,” Chemical Engineering Journal, vol. 380, Jan. 2020, doi: 10.1016/j.cej.2019.122473.
[12] J. Ramalho, M. Ramalho, M. Jay, L. Burke, and C. Semelka, “PT,” Magn Reson Imaging, 2016, doi: 10.1016/j.mri.2016.09.005.
[13] A. H. Behzadi, Y. Zhao, Z. Farooq, and M. R. Prince, “to Gadolinium-based Contrast Agents?: A Systematic Review and,” vol. 286, no. 2, 2018.
[14] T. Mortezazadeh, E. Gholibegloo, N. Riyahi, S. Dehghani, and S. Haghgoo, “Nanopartikel gadolinium ( III ) oksida dilapisi dengan poli ( ? - siklodekstrin-asam co-pentetik ) yang difungsikan dengan asam folat sebagai agen nano-kontras bertarget yang kompatibel untuk diagnostik kanker?: studi in vitro dan in vivo,” pp. 487–500, 2019.
[15] X. Han, K. Xu, O. Taratula, and K. Farsad, “Applications of nanoparticles in biomedical imaging,” Nanoscale, vol. 11, no. 3. Royal Society of Chemistry, pp. 799–819, Jan. 21, 2019. doi: 10.1039/c8nr07769j.
[16] Y. J. Jang et al., “Hydrophilic biocompatible poly(Acrylic acid-co-maleic acid) polymer as a surface-coating ligand of ultrasmall Gd2O3 nanoparticles to obtain a high R1 value and T1 Mr images,” Diagnostics, vol. 11, no. 1, Jan. 2021, doi: 10.3390/diagnostics11010002.
[17] J. K. Tee et al., “Nanoparticles’ interactions with vasculature in diseases,” Chemical Society Reviews, vol. 48, no. 21. Royal Society of Chemistry, pp. 5381–5407, Nov. 07, 2019. doi: 10.1039/c9cs00309f.
[18] F. Oroojalian, F. Charbgoo, M. Hashemi, and A. Amani, “Recent advances in nanotechnology-based drug delivery systems for the kidney,” Journal of Controlled Release, vol. 321, no. February, pp. 442–462, 2020, doi: 10.1016/j.jconrel.2020.02.027.
[19] T. Gayathri, N. M. Sundaram, and R. A. Kumar, “Gadolinium oxide nanoparticles for Magnetic Resonance Imaging and cancer theranostics,” Journal of Bionanoscience, vol. 9, no. 6. American Scientific Publishers, pp. 409–423, Dec. 01, 2015. doi: 10.1166/jbns.2015.1325.
[20] C. Wu et al., “Hyaluronic Acid-Functionalized Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging-Guided Radiotherapy of Tumors,” 2020.
[21] A. Ahab, F. Rohman, F. Iskandar, F. Haryanto, and I. Arif, “A simple straightforward thermal decomposition synthesis of PEG-covered Gd2O3 (Gd2O3@PEG) nanoparticles,” Advanced Powder Technology, vol. 27, no. 4, pp. 1800–1805, Jul. 2016, doi: 10.1016/j.apt.2016.06.012.
[22] A. Dougherty, E. L. Y. Nasution, F. Iskandar, and G. Dougherty, “Facile solvothermal synthesis and functionalization of polyethylene glycol-coated paramagnetic Gd 2 (CO 3 ) 3 particles and corresponding Gd 2 O 3 nanoparticles for use as MRI contrast agents,” Journal of Science: Advanced Materials and Devices, vol. 4, no. 1, pp. 72–79, Mar. 2019, doi: 10.1016/j.jsamd.2018.12.005.
[23] T. Yousefi, M. Torab-mostaedi, M. Ghasemi, and A. Ghadirifar, “Synthesis of Gd 2 O 3 nanoparticles?: using bulk Gd 2 O 3 powders as precursor,” 2015, doi: 10.1007/s12598-015-0447-z.
[24] H. Setiawan, B. Triyatna, F., Nurmanjaya, A., Subechi, M., Sarwono, D.A., and F. A.A., & Rindiyantono, “Synthesis and characterization of gadolinium nanoparticles using polyol method as a candidate for MRI Contrast Agent Synthesis and characterization of gadolinium nanoparticles using polyol method as a candidate for MRI Contrast Agent,” 2022, doi: 10.1088/1742-6596/2193/1/012010.
[25] S. Wyantuti et al., “Response surface methodology box-behnken design to optimise the hydrothermal synthesis of gadolinium nanoparticles,” Chinese Journal of Analytical Chemistry, vol. 51, no. 10, Oct. 2023, doi: 10.1016/j.cjac.2023.100316.
[26] N. Abid et al., “Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review,” Advances in Colloid and Interface Science, vol. 300. Elsevier B.V., Feb. 01, 2022. doi: 10.1016/j.cis.2021.102597.
[27] S. Hazarika, N. Paul, and D. Mohanta, “Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide nanorods,” vol. 37, no. 4, pp. 789–796, 2014.
[28] S. M. ul Hassan et al., “Hydrothermally synthesized lanthanide-incorporated multifunctional zirconia nanoparticles: Potential candidate for multimodal imaging,” J King Saud Univ Sci, vol. 34, no. 5, Jul. 2022, doi: 10.1016/j.jksus.2022.102080.
[29] Y. Shi, R. van der Meel, X. Chen, and T. Lammers, “The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy,” Theranostics, vol. 10, no. 17. Ivyspring International Publisher, pp. 7921–7924, 2020. doi: 10.7150/thno.49577.
[30] A. Guleria et al., “Effect of Polyol Chain Length on Proton Relaxivity of Gadolinium Oxide Nanoparticles for Enhanced Magnetic Resonance Imaging Contrast,” Journal of Physical Chemistry C, vol. 123, no. 29, pp. 18061–18070, Jul. 2019, doi: 10.1021/acs.jpcc.9b04089.
[31] O. J. V. Belleza and A. J. L. Villaraza, “Ion charge density governs selectivity in the formation of metal-Xylenol Orange (M-XO) complexes,” Inorg Chem Commun, vol. 47, pp. 87–92, 2014, doi: 10.1016/j.inoche.2014.07.024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.