Pengembangan Eksipien Cetak Langsung dari Crosslinked Pati Buah Pisang Kepok dengan Silicon Dioxide Menggunakan Teknik Coprocessing
Development of Direct Compression Excipient from Crosslinked Kepok Banana Starch with Silicon Dioxide Using Coprocessing Techniques
DOI:
https://doi.org/10.25026/jsk.v6i5.2284Abstract
This research aims to create and evaluate the crosslink coprocess of Kepok banana starch with silica dioxide as an additional material for making tablets using the direct compression method. Coprocessing is carried out using the coprecipitation method of silica on the surface of starch that has been crosslinked with sodium tripolyphosphate. Coprocesses were evaluated based on solubility characteristics, swelling power, angle of repose, Hausner ratio, compressibility index, FTIR, and SEM microscopy. The starch-silica coprocess showed better flow properties and compressibility compared to other frequently used super disintegrants. FTIR showed that there was no chemical reaction between the two starch and silica materials during the coprecipitation process. Coprocess crosslink kepok banana starch can be used as an excipient for making tablets using the direct compression method because it has better flow properties and a compressibility index.
Keywords: Banana Starch, Coprocess, Crosslink starch, Silicon dioxide
Abstrak
Tujuan dari penelitian ini adalah untuk membuat dan melakukan evaluasi coproses crosslink pati buah pisang kepok dengan silika dioxide sebagai eksipien pembuatan tablet dengan metode cetak langsung. Pembuatan coprosess dilakukan dengan metode kopresipitasi silika pada permukaan pati yang sudah di crosslink dengan sodium tripoluphospate. Coprosess dievaluasi berdasarkan karakteristik kelarutan, daya pengembangan, sudut diam, rasio hausner, indeks kompresibilitas, FTIR dan mikroskop SEM. Coprocess pati-silika menunjukkan sifat alir dan kompresibilitas yang lebih baik dibandingkan dengan superdisintegran lain yang sering digunakan. FTIR menunjukkan tidak ada reaksi kimia antara kedua bahan pati dan silika selama proses kopresipitasi. Coprosess crosslink pati buah pisang kepok dapat digunakan sebagai eksipien pembuatan tablet dengan metode kempa langsung karena memiliki sifat alir dan indeks kompresibilitas yang lebih baik.
Kata Kunci: Coprocess, Pati buah pisang, Pati ikat silang, Silicon dioxide
References
[1] Augsburger LL, Hoag SW. Pharmaceutical dosage forms-tablets. CRC press; 2016.
[2] Machado-charry E, Kottlan A, Zirkl A, Geistlinger J, Machado E, Glasser BJ, et al. Single-Tablet-Scale Direct-Compression?: An On-Demand Manufacturing Route for Personalized Tablets Single-tablet-scale direct-compression?: An on-demand manufacturing route for personalized tablets. Int J Pharm [Internet]. 2023;643(July):123274. Tersedia pada: https://doi.org/10.1016/j.ijpharm.2023.123274
[3] Kokott M, Lura A, Breitkreutz J, Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur J Pharm Biopharm. 2021;168:122–30.
[4] Rahmawati TE, Cahyani IM, Munisih S. Karakterisasi Pati Bonggol Pisang Kepok Kuning (Musa paradisiaca L.) sebagai Bahan Tambahan Sediaan Farmasi: Characterization of Sucker Starch of Yellow Kepok Banana (Musa paradisiaca L.) as Pharmaceutical Excipient. J Sains dan Kesehat. 2023;5(2):100–8.
[5] Nawaz H, Waheed R, Nawaz M, Shahwar D. Physical and chemical modifications in starch structure and reactivity. Chem Prop starch. 2020;9:13–35.
[6] Mane P, Vaidya I. International Journal of Institutional. 2014;4(April):238–64.
[7] Abdillah M. Characterization and Modification of Corn Starch (Zea mays [L.]) and HPMC with Sodium Tripolyphosphate as Crosslinking Agent. Urecol Journal Part C Heal Sci. 2022;2(2):35–46.
[8] Trisopon K. Development of a multi-functional rice starch-based pharmaceutical excipient by co-process technique for direct compression of tablets. Chiang Mai: Graduate School, Chiang Mai University; 2022.
[9] Gohel MC, Jogani PD, Marg BSD. A review of co-processed directly compressible excipients . 2005;8(1):76–93.
[10] Jonat S, Hasenzahl S, Drechsler M, Albers P, Wagner KG, Schmidt PC. Investigation of compacted hydrophilic and hydrophobic colloidal silicon dioxides as glidants for pharmaceutical excipients. Powder Technol. 2004;141(1–2):31–43.
[11] Golshahi M, Taslikh M, Nayebzadeh K, Arjeh E. Dual modification of normal corn starch by cross-linking and annealing: investigation of physicochemical, thermal, pasting, and morphological properties. J Food Meas Charact. 2023;1–11.
[12] Nagpal M, Goyal A, Kumar S, Singh I. Starch-silicon dioxide coprecipitate as superdisintegrant?: formulation and evaluation of fast disintegrating tablets. 2012;(January 2016).
[13] Waterschoot J, Gomand S V., Delcour JA. Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocoll [Internet]. 2016;52:69–77. Tersedia pada: http://dx.doi.org/10.1016/j.foodhyd.2015.06.012
[14] Depkes RI. Farmakope Indonesia edisi VI. Departemen Kesehatan Republik Indonesia. 2020.
[15] Noma ST, Tytler BA, Olowosulu AK, Yahaya ZS. Physicochemical Evaluation Of Sorghum Starch Co-Processed With Colloidal Silicon Dioxide. J Pharm Allied Sci. 2020;17(2).
[16] Rashid I, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A. A novel multifunctional pharmaceutical excipient: Modification of the permeability of starch by processing with magnesium silicate. Int J Pharm. 2011;411(1–2):18–26.
[17] Alam F, Hasnain A. Studies on swelling and solubility of modified starch from Taro (Colocasia esculenta): effect of pH and temperature. Agric Conspec Sci. 2009;74(1):45–50.
[18] Yusuf F, Kubo AI, Abdulrashid FU, Madu SJ, Muazu J. Studies on the Physicochemical Properties of Coprocessed Starch obtained from Ipomoea batatas. Niger J Basic Appl Sci. 2022;30(2).
[19] Trisopon K, Kittipongpatana N, Kittipongpatana OS. A spray-dried, co-processed rice starch as a multifunctional excipient for direct compression. Pharmaceutics. 2020;12(6):518.
[20] Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. Aaps PharmSciTech. 2014;15:65–74.
[21] Da Silva Miranda Sechi N, Marques PT. Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Mater Res. 2017;20:174–80.
[22] Rashid I, Al-Remawi M, Eftaiha A, Badwan A. Chitin–silicon dioxide coprecipitate as a novel superdisintegrant. J Pharm Sci. 2008;97(11):4955–69.
[23] Rachmawati S. Karakterisasi Pati Buah Pisang Kepok Kuning (Musa paradisiaca L.) Sebagai Bahan Tambahan Sediaan Farmasi. Semarang; 2019.
[24] Abdillah M, Agent C. Health Sciences. 2022;2(2):35–46.
[25] Chatakanonda P, Varavinit S, Chinachoti P. Effect of Crosslinking on Thermal and Microscopic Transitions of Rice Starch. LWT - Food Sci Technol. 2000;33(4):276–84.
[26] Trisopon K, Kittipongpatana OS. Development of a Direct Compression Excipient from Epichlorohydrin-Crosslinked Carboxymethyl Rice Starch with Sodium Silicate Using a Coprocessing Technique. Starch/Staerke. 2019;71(5–6):1–8.
[27] Pharmacopeia US. The United States Pharmacopeia, USP 40/The National Formulary, NF 35. In: Rockville, MD: US Pharmacopeial Convention. 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.