Aktivitas Antibakteri Kokristal Sefiksim-Nikotinamida Menggunakan Agar Diffusion dan Broth Dilution Test
Antibacterial Activity of Cocrystals of Cefixime with Nicotinamide Using Agar Diffusion and Broth Dilution Test
DOI:
https://doi.org/10.25026/jsk.v5i6.2069Keywords:
sefiksim, liquid-assisted grinding, aktivitas antibakteriAbstract
Cefixime has been formulated in cocrystal form with nicotinamide (coformer). SEF-NIK cocrystals were prepared at a mole ratio of 1:1 using a liquid-assisted grinding method. The cocrystals were characterized using DSC, FTIR, SEM, and PXRD. The characterization results showed that cocrystals were formed between cefixime and nicotinamide. The results of the solubility test, dissolution rate and permeability of the SEF-NIK cocrystal showed a significant increase compared to pure cefixime. Based on these results, the SEF-NIK cocrystal was continued for pharmacodynamic studies with in vitro antibacterial activity studies. This study aims to determine the effect of cocrystallization techniques on the antibacterial activity of cefixime. The test was carried out using two methods, namely the Agar Diffusion Test and the Broth Dilution Test. The results showed that cocrystallization of cefixime with nicotinamide did not inhibit its effectiveness against Escherichia coli bacteria, but its effectiveness was better than pure cefixime. In the agar diffusion method, the inhibition zones of cefixime and SEF-NIK cocrystals against Escherichia coli bacteria were 6.2 mm and 8.6 mm, respectively. On the fifth day of the broth dilution test method, the OD values of Escherichia coli bacteria in the cefixime and SEF-NIK cocrystals were 1.330 and 1.064, respectively.
Keywords: cefixime, liquid-assisted grinding, antibacterial activity
Abstrak
Sefiksim telah berhasil dibuat dalam bentuk kokristal dengan nikotinamida (koformer). Kokristal SEF-NIK dibuat dengan perbandingan mol 1:1 menggunakan metode liquid-assisted grinding. Kokristal dikarakterisasi menggunakan DSC, FTIR, SEM, dan PXRD. Hasil karakterisasi menunjukkan bahwa terbentuk kokristal antara sefiksim dan nikotinamida. Hasil uji kelarutan, laju disolusi, dan permeabilitas kokristal SEF-NIK menunjukkan peningkatan yang signifikan dibandingkan dengan sefiksim murni. Berdasarkan hasil penelitian tersebut, kokristal SEF-NIK dilanjutkan ke tahap uji farmakodinamik yakni uji aktivitas antibakteri secara in vitro. Penelitian ini bertujuan untuk mengetahui pengaruh dari teknik kokristalisasi terhadap aktvitas antibakteri sefiksim. Pengujian dilakukan menggunakan dua metode yakni Agar Diffusion Method (difusi agar) dan Broth Dilution Method (dilusi cair). Hasil penelitian menunjukkan bahwa kokristalisasi sefiksim dengan nikotinamida tidak menghambat efektivitasnya terhadap bakteri Escherichia coli, akan tetapi efektivitasnya lebih baik dibandingkan sefiksim murni. Pada metode difusi agar, zona hambat sefiksim terhadap bakteri Escherichia coli sebesar 6,2 mm sedangkan kokristal SEF-NIK lebih besar yakni 8,6 mm. Pada metode dilusi cair, hasil pengukuran OD bakteri Escherichia coli hari kelima pada sefiksim sebesar 1,330 sedangkan pada kokristal SEF-NIK sebesar 1,064.
Kata Kunci: sefiksim, liquid-assisted grinding, aktivitas antibakteri
References
Abdullah, A., Mutmainnah, Sangkal, A., & Ismail, R. (2022). UV-Vis Spectrophotometric Method Validation of Cefixime in Phosphate Buffer. Lumbung Farmasi: Jurnal Ilmu Kefarmasian, 3(2), 144–147. https://doi.org/10.31764/lf.v3i2.7657
Arora, S. C., Sharma, P. K., Irchhaiya, R., Khatkar, A., Singh, N., & Gagoria, J. (2010). Development, Characterization, and Solubility Study of Solid Dispersion of Cefixime Trihydrate by Solvent Evaporation Method. International Journal of Drug Development and Research, 2(2), 230–424. https://doi.org/10.4103/0110-5558.72427
Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation Design for Poorly Water-Soluble Drugs Based on Biopharmaceutics Classification System: Basic Approaches and Practical Applications. International Journal of Pharmaceutics, 420, 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032
Korotkova, E. I., & Kratochvíl, B. (2014). Pharmaceutical Cocrystals. Procedia Chemistry, 10, 473–476.
Abdullah, A., Mutmainnah, & Wikantyasning, E. R. (2022). Cocrystals of Cefixime with Nicotinamide: Improved Solubility, Dissolution, and Permeability. Indonesian Journal of Pharmacy, 33(3), 394–400. https://doi.org/10.22146/ijp.2530
Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics.
Shaikh, M. I., Derle, N. D., & Bhamber, R. (2012). Permeability Enhancement Techniques for Poorly Permeable Drugs: A Review. Journal of Applied Pharmaceutical Science, 2(6), 34–39.
Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceutical Cocrystals: An Overview. International Journal of Pharmaceutics, 419, 1–11.
Vasisht, K., Chadha, K., Karan, M., Bhalla, Y., Jena, A. K., & Chadha, R. (2016). Enhancing Biopharmaceutical Parameters of Bioflavonoid Quercetin by Cocrystallization. CrystEngComm, 18(8), 1403–1415. https://doi.org/10.1039/c5ce01899d
Vasisht, K., Chadha, K., Karan, M., Bhalla, Y., Chadha, R., Khullar, S., & Mandal, S. (2017). Co-crystals of Hesperitin: Structural, Pharmacokinetic, and Pharmacodynamic Evaluation. Crystal Growth & Design, 17(5), 2386–2405. https://doi.org/10.1021/acs.cgd.6b01769
Tomar, S., Chakraborti, S., Jindal, A., Grewal, M. K., & Chadha, R. (2020). Cocrystals of Diacerein: Towards the Development of Improved Biopharmaceutical Parameters. International Journal of Pharmaceutics, 574. https://doi.org/10.1016/j.ijpharm.2019.118942
Shemchuk, O., D’Agostino, S., Fiore, C., Sambri, V., Zannoli, S., Grepioni, F., & Braga, D. (2020). Natural Antimicrobials Meet a Synthetic Antibiotic: Carvacrol-thymol and Ciprofloxacin Cocrystals as A Promising Solid-State Route to Activity Enhancement. Crystal Growth and Design, 20(10), 6796–6803. https://doi.org/10.1021/acs.cgd.0c00900
Wang, L. Y., Bu, F. Z., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2020). A Sulfathiazole-Amantadine Hydrochloride Cocrystal: The First Codrug Simultaneously Comprising Antiviral and Antibacterial Components. Crystal Growth and Design, 20(5), 3236–3246. https://doi.org/10.1021/acs.cgd.0c00075
Oxoid. (n.d.). Mueller Hinton Agar. Retrieved September 5, 2023, from http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=CM0337&c=UK&lang=EN
Merck. (n.d.). Nutrient Broth. Retrieved September 5, 2023, from https://www.merckmillipore.com/ID/id/product/Nutrient-broth,MDA_CHEM-105443?ReferrerURL=https%3A%2F%2Fwww.bing.com%2F#anchor_TI
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for In Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Azizah, A. N., Ichwanuddin, & Marfu’ah, N. (2020). Aktivitas Antibakteri Ekstrak Etanol Teh Hijau (Camellia sinensis) terhadap Pertumbuhan Staphylococcus epidermidis. Pharmaceutical Journal of Islamic Pharmacy, 4(2), 15–23. https://doi.org/10.21111/pharmasipha.v4i2.4158
Buch, T., & Rollová, B. M. (2019). Bacterial Growth Curve by OD600 and SoloVPE. In Biofactory Competence Centre.
Matlock, B. C. (2019). Differences in Bacterial Optical Density Measurements Between UV-Visible Spectrophotometers. In Technical Note (Issue 52236).
Schultheiss, N., & Newman, A. (2009). Pharmaceutical Cocrystals and Their Physicochemical Properties. Crystal Growth and Design, 9(6), 2950–2967.
Kumar, S., & Nanda, A. (2017). Pharmaceutical Cocrystals: An Overview. Indian Journal of Pharmaceutical Sciences, 79(6), 858–871. https://doi.org/10.4172/pharmaceutical-sciences.1000302
Bunaciu, A. A., Udristioiu, elena gabriela, & Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45, 289–299.
Brittain, H. G. (2012). Cocrystal Systems of Pharmaceutical Interest: 2010. Crystal Growth & Design, 12, 1046–1054.
Muhammad, A., Nurulita, N. A., & Budiman, A. (2017). Uji Sensitivitas Antibiotik terhadap Bakteri Penyebab Infeksi Saluran Kemih pada Pasien Rawat Inap di RSUD Prof. dr. Margono Soekarjo Purwokerto. Pharmacy, 14(2), 247–263. https://doi.org/10.30595/pharmacy.v14i2.1684
Shahbaz, K. (2017). Cephalosporins: Pharmacology and Chemistry. Pharmaceutical and Biological Evaluations, 4(6), 234–238.
LaPierre, L., Cornejo, J., Asun, A., Vergara, C., & Varela, D. (2020). Laboratory Guide: Methodologies for Antimicrobial Susceptibility Testing. APEC Secretariat.
Stafylis, C., Keith, K., Mehta, S., Tellalian, D., Burian, P., Millner, C., & Klausner, J. D. (2021). Clinical Efficacy of Cefixime for the Treatment of Early Syphilis. Clinical Infectious Diseases, 73(5), 907–910. https://doi.org/10.1093/cid/ciab187
Sarkar, P., Yarlagadda, V., Ghosh, C., & Haldar, J. (2017). A Review on Cell Wall Synthesis Inhibitors with An Emphasis on Glycopeptide Antibiotics. Medicinal Chemistry Communication, 8(3), 516–533. https://doi.org/10.1039/c6md00585c
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.