Studi In Silico Potensi Antikanker Kolorektal Senyawa Zerumbone dan Derivatnya terhadap Protein P38-MAPK

Study of In Silico Anticancer Colorectal Potential of Zerumbone Compounds and Their Derivatives Against on P38-MAPK Protein

Authors

  • Ihza Adzkiya Mubarak Al-Husni Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia https://orcid.org/0009-0009-3125-0647
  • Ade Shinta Maria Br Napitu Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Yana Putri Amelia Melki Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Zahara Azti Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Winda Tiara Ahmad Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Ratna Dewi Primasty Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia https://orcid.org/0009-0009-4176-7412
  • Marsa Jannatul Fida Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Anjar Hermadi Saputro Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia
  • Winni Nur Auli Program Studi Farmasi, Fakultas SAINS, Institut Teknologi Sumatera, Lampung, Indonesia

DOI:

https://doi.org/10.25026/jsk.v7i3.2469

Abstract

Colorectal cancer (CRC) is one of the diseases with the highest incidence rate in Indonesia and the world. Cancer treatment often uses natural compounds as an alternative treatment such as zerumbone in lempuyang rhizome. P38-Mitogen-activated protein kinase (MAPK) becomes the main target because it can regulate various cellular programs. Research was conducted to analyze the interaction of zerumbone and its derivatives against P38-MAPK proteins as potential anti-colorectal cancer. The method used was in silico using the pkCSM web, ProTox-II, Pubchem, SwissADME, and software such as Avogadro, AutoDockTools, BIOVIA Discovery Studio Visualizer. In Silico results of Dibenzosuberone compound as a natural ligand with a binding energy value of -13.05 kcal/mol, while the best test ligand is Derivat 21 with a binding energy value of -10.94 kcal/mol. Derivat 21 binds to the same active side as the natural ligand, namely: LEU104, LYS53, ALA51, ILE 84. ASP168, MET109, and ASP112. So that Derivat 21 has the potential as an anti-colorectal cancer drug that is more effective and safe compared to other compounds.

Keywords:          Zerumbone, Colorectal Cancer, P38-MAPK, In silico

 

Abstrak

Kanker kolorektal (colorectal cancer, CRC), salah satu jenis penyakit dengan tingkat kejadian tertinggi di Indonesia juga di dunia. Pengobatan kanker sering menggunakan senyawa alami sebagai pengobatan alternatif seperti zerumbone pada rimpang lempuyang. P38-Protein kinase teraktivasi mitogen (MAPK) menjadi target utama karena dapat mengatur berbagai program seluler. Penelitian dilakukan untuk menganalisis interaksi zerumbone dan derivatnya terhadap protein P38-MAPK sebagai potensi anti kanker kolorektal. Metode yang digunakan secara in silico menggunakan web pkCSM, ProTox-II, Pubchem, SwissADME, dan software seperti Avogadro, AutoDockTools, BIOVIA Discovery Studio Visualizer. Hasil In Silico senyawa Dibenzosuberone sebagai ligan alami dengan nilai binding energy -13,05 kkal/mol, Sedangkan ligan uji terbaik yaitu Derivat 21 dengan nilai binding energy -10,94 kkal/mol. Derivat 21 berikatan pada sisi aktif yang sama dengan ligan alami yaitu: LEU104, LYS53, ALA51, ILE 84. ASP168, MET109, dan ASP112. Sehingga Derivat 21 memiliki potensi sebagai obat anti kanker kolorektal yang lebih efektif dan aman dibandingkan dengan senyawa lainnya.

Kata Kunci:         Zerumbone, Kanker Kolorektal, P38-MAPK, In Silico

References

[1] C. Mattiuzzi and G. Lippi, “Current cancer epidemiology,” J Epidemiol Glob Health, vol. 9, no. 4, pp. 217–222, Dec. 2019, doi: 10.2991/jegh.k.191008.001.

[2] J. S. Brown, S. R. Amend, R. H. Austin, R. A. Gatenby, E. U. Hammarlund, and K. J. Pienta, “Updating the Definition of Cancer,” Molecular Cancer Research, vol. 21, no. 11, pp. 1142–1147, 2023, doi: 10.1158/1541-7786.MCR-23-0411.

[3] M. B. O. Rastini, N. K. M. Giantari, K. D. Adnyani, and N. P. L. Laksmiani, “Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara In Silico,” Jurnal Kimia, p. 180, Jul. 2019, doi: 10.24843/jchem.2019.v13.i02.p09.

[4] A. Murakami et al., “Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the ?,?-unsaturated carbonyl group is a prerequisite,” 2002.

[5] S. Lallo et al., “Analisis Zerumbone Dalam Zingiber zerumbet Dan Aktivitas Penghambatannya Terhadap Bakteri Mycobacterium tuberculosis,” Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), vol. 4, no. 2, pp. 126–132, Nov. 2018, doi: 10.22487/j24428744.2018.v4.i2.11138.

[6] K. Tariq and K. Ghias, “Colorectal cancer carcinogenesis: a review of mechanisms,” Cancer Biology and Medicine, vol. 13, no. 1. Cancer Biology and Medicine, pp. 120–135, Mar. 01, 2016. doi: 10.28092/j.issn.2095-3941.2015.0103.

[7] V. Nori et al., “A Sustainable and Catalytic Synthesis of Dibenzosuberone,” ChemCatChem, vol. 15, no. 14, Jul. 2023, doi: 10.1002/cctc.202300642.

[8] F. F. Setiawan and P. Istyastono, “Uji In Silico Senyawa 2,6-Dihidroksiantraquinon Sebagai Ligan Pada Reseptor Estrogen Alfa,” vol. 12, no. 2, 2015.

[9] M. B. O. Rastini, N. K. M. Giantari, K. D. Adnyani, and N. P. L. Laksmiani, “Molecular Docking Aktivitas Antikanker Dari Kuersetin Terhadap Kanker Payudara Secara In Silico,” Jurnal Kimia, p. 180, Jul. 2019, doi: 10.24843/jchem.2019.v13.i02.p09.

[10] H. Noviardi, P. Studi Farmasi, and S. Tinggi Teknologi Industri dan Farmasi Bogor, “Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien A4 Hidrolase Pada Kanker Kolon Secara In Silico,” 2015. [Online]. Available: http://www.rscb.org/pdb/

[11] D. Dwirosalia et al., “Studi In Silico Potensi Anti Kanker Senyawa Turunan Kumarin Terhadap Protein Bcl-2” Original Article MFF, vol. 25, no. 2, pp. 84–87, 2021, doi: 10.20956/mff.v25i2.13648.

[12] R. Fauziyya et al., “Bioinformatic and Molecular Docking Study of Zerumbone and Its Derivates against Colorectal Cancer,” Indonesian Journal of Cancer Chemoprevention, 2023, [Online]. Available: https://www.ncbi.

[13] J. Saranya, B. P. Dhanya, G. Greeshma, K. V. Radhakrishnan, and S. Priya, “Effects of a new synthetic zerumbone pendant derivative (ZPD) on apoptosis induction and anti-migratory effects in human cervical cancer cells,” Chem Biol Interact, vol. 278, pp. 32–39, Dec. 2017, doi: 10.1016/j.cbi.2017.10.006.

[14] R. Prasetiawati, B. Permana, D. Soni, and S. N. Agung, “Molecular Docking Study Of Xanthone Derivative Compounds Of Mangosteen Rind (Garcinia Mangostana L.) To Er-? (Estrogen Receptor Alfa) And Er-? (Estrogen Receptor Beta) As Anti-Breastcancer” Journal Ilmiah Farmako Bahari, vol. 10, no. 1, pp. 45–52, 2018, [Online]. Available: http://www.rscb.org/pdb/,

[15] A. Tiara Perdana et al., “MOLECULAR DOCKING SENYAWA POTENSIAL ANTICOVID-19 SECARA IN SILICO,” 2021. [Online]. Available: http://www.rcsb.org/pdb

[16] T. Phan, X. H. Zhang, S. Rosen, and L. G. Melstrom, “P38 kinase in gastrointestinal cancers,” Cancer Gene Therapy, vol. 30, no. 9. Springer Nature, pp. 1181–1189, Sep. 01, 2023. doi: 10.1038/s41417-023-00622-1.

[17] L. J. W. Pua et al., “Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma,” International Journal of Molecular Sciences, vol. 23, no. 3. MDPI, Feb. 01, 2022. doi: 10.3390/ijms23031108.

[18] Z. Ya’u Ibrahim, A. Uzairu, G. Shallangwa, and S. Abechi, “Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel ?-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels,” Sci Afr, vol. 10, Nov. 2020, doi: 10.1016/j.sciaf.2020.e00570.

[19] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings,” 2001. [Online]. Available: www.elsevier.com/locate/drugdeliv

[20] Y. Y. Liu, X. Y. Feng, W. Q. Jia, Z. Jing, W. R. Xu, and X. C. Cheng, “Identification of novel PI3K? inhibitors by docking, ADMET prediction and molecular dynamics simulations,” Comput Biol Chem, vol. 78, pp. 190–204, Feb. 2019, doi: 10.1016/j.compbiolchem.2018.12.002.

[21] R. Savla, J. Browne, V. Plassat, K. M. Wasan, and E. K. Wasan, “Review and analysis of FDA approved drugs using lipid-based formulations,” Drug Development and Industrial Pharmacy, vol. 43, no. 11. Taylor and Francis Ltd., pp. 1743–1758, Nov. 02, 2017. doi: 10.1080/03639045.2017.1342654.

[22] M. Sánchez-Navarro, J. Garcia, E. Giralt, and M. Teixidó, “Using peptides to increase transport across the intestinal barrier,” Advanced Drug Delivery Reviews, vol. 106. Elsevier B.V., pp. 355–366, Nov. 15, 2016. doi: 10.1016/j.addr.2016.04.031.

[23] M. Azman, A. H. Sabri, Q. K. Anjani, M. F. Mustaffa, and K. A. Hamid, “Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery,” Pharmaceuticals, vol. 15, no. 8. MDPI, Aug. 01, 2022. doi: 10.3390/ph15080975.

[24] R. Martien, I. D. K Irianto, V. Farida, and D. Purwita Sari, “Perkembangan Teknologi Nanopartikel Sebagai Sistem Penghantaran Obat Technology Developments Nanoparticles As Drug Delivery Systems,” 2012.

[25] S. Lallo et al., “Analisis Zerumbone Dalam Zingiber zerumbet Dan Aktivitas Penghambatannya Terhadap Bakteri Mycobacterium tuberculosis,” Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), vol. 4, no. 2, pp. 126–132, Nov. 2018, doi: 10.22487/j24428744.2018.v4.i2.11138.

[26] C. M. Prasada Rao, “Insights from the molecular docking and simulation analysis of P38 MAPK phytochemical inhibitor complexes,” Bioinformation, vol. 19, no. 3, pp. 323–330, Mar. 2023, doi: 10.6026/97320630019323.

[27] S. R. Rena, N. Nurhidayah, and R. Rustan, “Analisis Molecular Docking Senyawa Garcinia Mangostana L Sebagai Kandidat Anti SARS-CoV-2,” Jurnal Fisika Unand, vol. 11, no. 1, pp. 82–88, Feb. 2022, doi: 10.25077/jfu.11.1.82-88.2022.

[28] A. Agrawal, R. Awasthi, and G. T. Kulkarni, “A bioinformatic approach to establish P38? MAPK inhibitory mechanism of selected natural products in psoriasis,” 2022.

[29] S. Chander et al., “Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives,” Bioorg Chem, vol. 72, pp. 74–79, Jun. 2017, doi: 10.1016/j.bioorg.2017.03.013.

[30] D. E. V. Pires, T. L. Blundell, and D. B. Ascher, “pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures,” J Med Chem, vol. 58, no. 9, pp. 4066–4072, May 2015, doi: 10.1021/acs.jmedchem.5b00104.

Downloads

Published

2025-05-24

How to Cite

1.
Al-Husni IAM, Napitu ASMB, Melki YPA, Azti Z, Ahmad WT, Primasty RD, et al. Studi In Silico Potensi Antikanker Kolorektal Senyawa Zerumbone dan Derivatnya terhadap Protein P38-MAPK: Study of In Silico Anticancer Colorectal Potential of Zerumbone Compounds and Their Derivatives Against on P38-MAPK Protein. J. Sains Kes. [Internet]. 2025 May 24 [cited 2025 Oct. 26];7(3):227-38. Available from: https://jsk.jurnalfamul.com/index.php/jsk/article/view/2469

Most read articles by the same author(s)