Inhibitor CARDS Toxin sebagai Pengobatan Pnemonia pada Biji Jintan Hitam (Nigella sativa)
CARDS Toxin Inhibitor as Pnemonia Treatment in Black Cumin Seed (Nigella sativa)
DOI:
https://doi.org/10.25026/jsk.v7i3.2459Abstract
CARDS toxin is a protein component that triggers pnemonia. The purpose of this research is to find out what compounds can inhibit CARDS toxin in black cumin seed compounds. CARDS toxin was downloaded on the PDB site with the code 4TLW. The control used is hydroxychloroquine compound. The docking results showed inhibition of CARDS toxin, namely quercetin 3-(6''''-feruloylglucosyl)-(1->2)-galactosyl-(1->2)-glucoside (-16.4 kcal/mol), gramisterol (-10.0 kcal/mol), taraxerol (-9.6 kcal/mol) and quercetin (-9.0 kcal/mol) compared to the control. SwissADME pharmacokinetic values showed that the compounds were lipophilic, namely gramisterol and taraxerol. Absorption values showed that only quercetin 3-(6''''-feruloylglucosyl)-(1->2)-galactosyl-(1->2)-glucoside and quercetin compounds had high absorption values while other compounds were still very low. Only quercetin compound inhibited CYP1A2. Bioavailability values of all compounds were more than 10%. All plant compounds are possible to be synthesized (range score 1-10).
Keywords: CARDS Toxin, Pnemonia, Mycoplasma pneumoniae
Abstrak
CARDS toxin merupakan kompenen protein pencetus penyakit pnemonia. Tujuan dari penelitian ini adalah untuk mengetahui senyawa apa saja yang mampu menghambat CARDS toxin pada senyawa biji jintan hitam. CARDS toxin diunduh pada situs PDB dengan kode 4TLW. Kontrol yang digunakan adalah senyawa hydroxychloroquine. Hasil docking menunjukan terdapat penghambatan CARDS toxin yaitu quercetin 3-(6''''-feruloylglucosyl)-(1->2)-galactosyl-(1->2)-glucoside (-16.4 kcal/mol), gramisterol (-10.0 kcal/mol), taraxerol (-9.6 kcal/mol) dan quercetin (-9.0 kcal/mol) dibanding dengan kontrol. Nilai farmakokinenik SwissADME menunjukan senyawa bersifat lipofilik yaitu gramisterol dan taraxerol. Nilai absorbsi menunjukan hanya senyawa quercetin 3-(6''''-feruloylglucosyl)-(1->2)-galactosyl-(1->2)-glucoside dan quercetin memiliki nilai absorbsi yang tinggi sedanggkan senyawa lain masih sangat rendah. Hanya senyawa quercetin yang menghambat CYP1A2. Nilai bioavabilitas semua senyawa lebih dari 10%. Semua senyawa tanaman memungkinkan untuk dapat disintesis (range score 1-10).
Kata Kunci: CARDS Toxin, Pnemonia, Mycoplasma pneumoniae
References
F. Sains, D. A. N. Teknologi, U. Islam, and N. Walisongo. (2021) “Klasifikasi Pneumonia Akibat Virus Corona Pada Citra Rontgen Toraks Berbasis Fitur Statistik,”.
K. B. Waites and D. F. Talkington. (2004) “Mycoplasma pneumoniae and its role as a human pathogen,” Clin. Microbiol. Rev., vol. 17, no. 4, pp. 697–728, table of contents, Oct, doi: 10.1128/CMR.17.4.697-728.
J. B. Baseman, S. P. Reddy, and S. F. Dallo. 1996 “Interplay between mycoplasma surface proteins, airway cells, and the protean manifestations of mycoplasma-mediated human infections,” Am. J. Respir. Crit. Care Med., vol. 154, no. 4 Pt 2, pp. S137-144, Oct, doi: 10.1164/ajrccm/154.4_Pt_2.S137.
W. S. Lim. 2022 “Pneumonia—Overview,” Encycl. Respir. Med., pp. 185–197, doi: 10.1016/B978-0-12-801238-3.11636-8.
G. R. S. Budinger, A. V. Misharin, K. M. Ridge, B. D. Singer, and R. G. Wunderink, “Distinctive features of severe SARS-CoV-2 pneumonia,” J. Clin. Invest., vol. 131, no. 14, p. e149412, doi: 10.1172/JCI149412.
A. Rizky, Rafieqah Nalar and Mahardika. (2023) “SENTRI?: Jurnal Riset Ilmiah,” SENTRI J. Ris. Ilm., vol. 2, no. 4, pp. 1275--1289.
C. Ebeledike and T. Ahmad (2003) “Pediatric Pneumonia,” in StatPearls, Treasure Island (FL): StatPearls Publishing. Accessed: Jan. 01, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK536940/
D. K. Dwi, R. Sasongkowati, and E. Haryanto. (2020) “Studi in Silico Sifat Farmakokinetik, Toksisitas, Dan Aktivitas Imunomodulator Brazilein Kayu Secang Terhadap Enzim 3-Chymotrypsin-Like Cysteine Protease Coronavirus,” J. Indones. Med. Lab. Sci. JoIMedLabS, vol. 1, no. 1, pp. 76–85, doi: 10.53699/joimedlabs.v1i1.14.
K. Ramasamy et al., (2021) “Mycoplasma pneumoniae CARDS toxin exploits host cell endosomal acidic pH and vacuolar ATPase proton pump to execute its biological activities,” Sci. Rep., vol. 11, p. 11571, doi: 10.1038/s41598-021-90948-3.
T. R. Kannan, J. J. Coalson, M. Cagle, O. Musatovova, R. D. Hardy, and J. B. Baseman. (2011) “Synthesis and Distribution of CARDS Toxin During Mycoplasma pneumoniae Infection in a Murine Model,” J. Infect. Dis., vol. 204, no. 10, pp. 1596–1604, doi: 10.1093/infdis/jir557.
W. Nafiu Muhammad. (2020) “Antimicrobial Activity of Nigella sativa (Black Seed) Combined with Honey Wax Against Selected Clinical Isolated,” vol. 8, pp. 2217–2224.
M. F. Ahmad et al., (2021) “An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties,” J. Herb. Med., vol. 25, p. 100404, doi: 10.1016/j.hermed.2020.100404.
J. Zhu et al., (2022)“Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds,” Drug Des. Devel. Ther., vol. 16, no. April, pp. 1067–1082, doi: 10.2147/DDDT.S359009.
F. M. Afendi et al., (2012) “KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research,” Plant Cell Physiol., vol. 53, no. 2, p. e1, doi: 10.1093/pcp/pcr165.
D. Salaria et al., (2022)“Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach,” PLOS ONE, vol. 17, no. 3, p. e0265420, doi: 10.1371/journal.pone.0265420.
A. Becker et al., “Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 16, pp. 5165–5170, doi: 10.1073/pnas.1420308112.
L. Senerovic, D. Opsenica, I. Moric, I. Aleksic, M. Spasi?, and B. Vasiljevic, “Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents,” in Advances in Microbiology, Infectious Diseases and Public Health: Volume 14, G. Donelli, Ed., in Advances in Experimental Medicine and Biology. , Cham: Springer International Publishing, 2020, pp. 37–69. doi: 10.1007/5584_2019_428.
X. Su et al., “Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae,” Front. Microbiol., vol. 12, no. November, pp. 1–13, 2021, doi: 10.3389/fmicb.2021.766591.
Z. Jiang, C. Kempinski, and J. Chappell, “Extraction and Analysis of Terpenes/Terpenoids,” Curr. Protoc. Plant Biol., vol. 1, pp. 345–358, 2016, doi: 10.1002/cppb.20024.
H. A. Noushahi et al., “Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency,” Plant Growth Regul., vol. 97, no. 3, pp. 439–454, Jul. 2022, doi: 10.1007/s10725-022-00818-9.
Y. Chen et al., “Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy volunteers,” Clin. Exp. Pharmacol. Physiol., vol. 36, no. 8, pp. 828–833, Aug. 2009, doi: 10.1111/j.1440-1681.2009.05158.x.
J. Xiao et al., “Quercetin Significantly Inhibits the Metabolism of Caffeine, a Substrate of Cytochrome P450 1A2 Unrelated to CYP1A2*1C??(?2964G>A) and *1F (734C>A) Gene Polymorphisms,” BioMed Res. Int., vol. 2014, p. 405071, 2014, doi: 10.1155/2014/405071.
M. N. Nakrani, R. H. Wineland, and F. Anjum, “Physiology, Glucose Metabolism,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. Accessed: Jan. 03, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK560599/
R. W. Hanson and O. E. Owen, “Gluconeogenesis,” in Encyclopedia of Biological Chemistry, W. J. Lennarz and M. D. Lane, Eds., New York: Elsevier, 2004, pp. 197–203. doi: 10.1016/B0-12-443710-9/00268-4.
Y. Wang, H. M. Carder, and A. E. Wendlandt, “Synthesis of rare sugar isomers through site-selective epimerization,” Nature, vol. 578, no. 7795, Art. no. 7795, Feb. 2020, doi: 10.1038/s41586-020-1937-1.
A. Septembre-Malaterre et al., “Focus on the high therapeutic potentials of quercetin and its derivatives,” Phytomedicine Plus, vol. 2, no. 1, p. 100220, Feb. 2022, doi: 10.1016/j.phyplu.2022.100220.
A. Daina, O. Michielin, and V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Sci. Rep., vol. 7, p. 42717, doi: 10.1038/srep42717.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

