Docking Molekuler Potensi Antiinflamasi Kandungan Senyawa Benger (Lagerstroemia ovalifolia Teijsm. & Binn) Terhadap 5KIR-Cyclooxygenase-2 (COX-2)
Molecular Docking of Anti-Inflammatory Potential of Benger (Lagerstroemia Ovalifolia Teijsm. & Binn) Compounds Against 5KIR - Cyclooxygenase-2 (COX-2)
DOI:
https://doi.org/10.25026/jsk.v6i5.2326Abstract
Content Benger plant extract compounds (Lagerstroemia ovalifolia Teijsm. & Binn.) are reported as a new class of COX-2 enzyme inhibitors. Molecular docking analysis of Benger plant extract compounds (Lagerstroemia ovalifolia Teijsm. & Binn.) against COX-2 enzyme is required to determine the affinity and interaction pattern between the above compounds and COX-2 enzyme. A total of 23 Benger metabolite compounds were evaluated against COX-2 protein structure (PDB: 5KIR) using Molegro Virtual Docker (MVD) software. The docking results showed that three compounds, namely Kaempferol-3-O-acetyl-glucoside isomer, Acacetin malonylgalactoside, and Kaempferol-3-Oa-L-rhamnoside, had a lower rerank score (more negative) compared to the ligand (RCX_601), indicating potential as COX-2 inhibitors that affect inflammation regulation in silico. In addition, in silico ADMET analysis using pkCSM showed that the three compounds were classified as non-toxic according to BPOM Regulation no. 10 of 2022.
Keywords: Lagerstroemia ovalifolia , Cyclooxygenase-2, Molegro Virtual Docker, 5KIR
Abstrak
Senyawa ekstrak tanaman Benger (Lagerstroemia ovalifolia Teijsm. & Binn.) dilaporkan sebagai kelas baru inhibitor enzim COX-2. Analisis docking molekuler senyawa Senyawa ekstrak tanaman Benger (Lagerstroemia ovalifolia Teijsm. & Binn.) terhadap enzim COX-2 diperlukan untuk mengetahui afinitas dan pola interaksi antara senyawa di atas dengan enzim COX-2. Sebanyak 23 senyawa metabolit Benger dievaluasi terhadap struktur protein COX-2 (PDB: 5KIR) menggunakan perangkat lunak Molegro Virtual Docker (MVD). Hasil docking menunjukkan bahwa tiga senyawa, yaitu Kaempferol-3-O-acetyl-glucoside isomer, Acacetin malonylgalactoside, dan Kaempferol-3-Oa-L-rhamnoside, memiliki rerank score yang lebih rendah (lebih negatif) dibandingkan dengan ligan (RCX_601), menunjukkan potensi sebagai inhibitor COX-2 yang mempengaruhi regulasi peradangan secara in silico. Selain itu, analisis ADMET secara in silico menggunakan pkCSM menunjukkan bahwa Kaempferol-3-O-a-L-arabinoside (Juglalin) lebih mudah diabsorpsi oleh usus dibandingkan dengan kedua senyawa lainnya namun ketiga senyawa tersebut diklasifikasikan tidak bersifat toksik.
Kata Kunci: Lagerstroemia ovalifolia , Cyclooxygenase-2, Molegro Virtual Docker, 5KIR
References
T. Wang et al., “Arachidonic acid metabolism and kidney inflammation,” Int. J. Mol. Sci., vol. 20, no. 15, pp. 1–28, 2019, doi: 10.3390/ijms20153683.
A. Waisman, R. S. Liblau, and B. Becher, “Innate and adaptive immune responses in the CNS.,” Lancet. Neurol., vol. 14, no. 9, pp. 945–955, Sep. 2015, doi: 10.1016/S1474-4422(15)00141-6.
J. H. Min et al., “Lagerstroemia ovalifolia exerts anti-inflammatory effects in Mice of LPS-induced ALI via downregulating of MAPK and NF-?B activation,” J. Microbiol. Biotechnol., vol. 31, no. 11, pp. 1501–1507, 2021, doi: 10.4014/jmb.2107.07023.
M. O. Kim et al., “Metabolomics approach to identify the active substances influencing the antidiabetic activity of Lagerstroemia species,” J. Funct. Foods, vol. 64, no. November 2019, p. 103684, 2020, doi: 10.1016/j.jff.2019.103684.
C. Rawat, S. Kukal, U. R. Dahiya, and R. Kukreti, “Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management,” J. Neuroinflammation, vol. 16, no. 1, p. 197, 2019, doi: 10.1186/s12974-019-1592-3.
B. J. Orlando and M. G. Malkowski, “Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone.,” J. Biol. Chem., vol. 291, no. 29, pp. 15069–15081, Jul. 2016, doi: 10.1074/jbc.M116.725713.
BPOM RI, “Peraturan Badan Pengawas Obat Dan Makanan Nomor 10 Tahun 2022 Tentang Pedoman Uji Toksisitas Praklinik Secara In Vivo,” Badan Pengawas Obat dan Makanan Republik Indones., pp. 1–220, 2022.
Molegro ApS, “Molegro Virtual Docker User Manual.” Aarhus C Denmark, 2011.
D. Yang, T. Wang, M. Long, and P. Li, “Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine.,” Oxid. Med. Cell. Longev., vol. 2020, p. 8825387, 2020, doi: 10.1155/2020/8825387.
R. Manjeet K and B. Ghosh, “Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages.,” Int. J. Immunopharmacol., vol. 21, no. 7, pp. 435–443, Jul. 1999, doi: 10.1016/s0192-0561(99)00024-7.
M. Kumar, E. R. Kasala, L. N. Bodduluru, V. Kumar, and M. Lahkar, “Molecular and biochemical evidence on the protective effects of quercetin in isoproterenol-induced acute myocardial injury in rats.,” J. Biochem. Mol. Toxicol., vol. 31, no. 1, pp. 1–8, Jan. 2017, doi: 10.1002/jbt.21832.
J.-H. Lee and G.-H. Kim, “Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis.,” J. Food Sci., vol. 75, no. 7, pp. H212-7, Sep. 2010, doi: 10.1111/j.1750-3841.2010.01755.x.
K. M. Lee et al., “Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity.,” Biochem. Pharmacol., vol. 80, no. 12, pp. 2042–2049, Dec. 2010, doi: 10.1016/j.bcp.2010.06.042.
S. Deng, ’Afa K Palu, B. J. West, C. X. Su, B.-N. Zhou, and J. C. Jensen, “Lipoxygenase inhibitory constituents of the fruits of noni (Morinda citrifolia) collected in Tahiti.,” J. Nat. Prod., vol. 70, no. 5, pp. 859–862, May 2007, doi: 10.1021/np0605539.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.