Aktivitas Hepatoprotektor Kombinasi Ekstrak Rimpang Kunyit (Curcuma longa L.) dan Buah Lada Hitam (Piper nigri L.) pada Tikus Wistar Diinduksi Parasetamol
Hepatoprotective Activity of Combination of Turmeric Rhizome Extract (Curcuma longa L.) and Black Pepper Fruit (Piper nigri L.) in Wistar Rats Induced by Paracetamol
DOI:
https://doi.org/10.25026/jsk.v6i4.2197Abstract
This study aims to increase the hepatoprotective activity of turmeric-black pepper combination. Animals grouped into 6 groups. Normal control and negative control (paracetamol/PCT) administered Na-CMC 1%, positive control (silymarin) 50 mg/Kg b.w, turmeric group administered 200 mg/Kg b.w., turmeric-black pepper 200 mg/Kg b.w. and 20 mg/Kg b.w. (KLH1), turmeric-black pepper 300 mg/Kg b.w. and 20 mg/Kg b.w. (KLH2) administered daily for 7 days. In addition to normal control, PCT induction was administered with 3 g/Kg b.w. After 48 hours the rats sacrificed and blood serum was collected. Alanine transminase (ALT) showed a significant decrease (p<0.001) with percent inhibition levels of turmeric 29.92%, KLH1 33.62%, KLH2 35.55%, silymarin 44.19% and aspartate transaminase (AST) (p<0.01) turmeric, KLH1 and (p<0.001) KLH2, silymarin with percent inhibition of turmeric 36.11%, KLH1 39.30%, KLH2 43.16% and silymarin 47.83%. Total protein levels increased significantly (p<0.001) with a percent increase in turmeric levels of 41.96%, KLH1 51.51%, KLH2 73.62%, silymarin 81.41% and albumin with a percent increase in turmeric 5%, significantly different (p<0.05) KLH1 7.67%, KLH2 8.33% and (p<0.01) silymarin 11.67%. All parameters compared to the negative group. The turmeric-black pepper has more potential to protect against liver damage than the pure extract.
Keywords: paracetamol. turmeric, black paper, hepatoprotective
Abstrak
Penelitian ini bertujuan meningkatkan aktivitas hepatoprotektor kombinasi kunyit-lada hitam. Hewan dikelompokan menjadi 6 kelompok. Kontrol normal dan control negatif (parasetamol/PCT) diberikan Na-CMC 1%, kontrol positif (silimarin) 50 mg/Kgbb, kelompok kunyit diberikan 200 mg/Kg bb, kombinasi kunyit-lada hitam 200 mg/Kg bb dan 20 mg/Kgbb (KLH1), kunyit-lada hitam 300 mg/Kgbb dan 20 mg/Kgbb (KLH2) diberikan satu kali sehari selama 7 hari. Pada hari ke-7 selain kontrol normal diberikan induksi PCT dengan dosis 3 g/Kgbb. Setelah 48 jam tikus dikorbankan dan diambil serum darah. Parameter alanin transminase (ALT) menunjukan penurunan signifikan (p<0,001) dengan persentasi kadar inhibisi kunyit 29,92%, KLH1 33,62%, KLH2 35,55%, silimarin 44,19% dan parameter aspartat transaminase (AST) (p<0,01) kunyit, KLH1 dan (p<0,001) KLH2, silimarin dengan persentasi inhibisi kunyit 36,11%, KLH1 39,30%, KLH2 43,16% dan silimarin 47,83%. Total protein mengalami peningkatan kadar signifikan (p<0,001) dengan persentasi peningkatan kadar kunyit 41,96%, KLH1 51,51%, KLH2 73,62%, silimarin 81,41% dan albumin dengan persentasi kenaikan kunyit 5%, berbeda signifikan (p<0,05) KLH1 7,67%, KLH2 8,33% dan (p<0,01) silimarin 11,67% semua parameter dibandingkan dengan kelompok negatif. Kombinasi kunyit-lada hitam lebih berpotensi untuk mencegah kerusakan hati dibandingkan dengan ekstrak murninya.
Kata Kunci: parasetamol, kunyit, lada hitam, hepatoprotektor
References
[1] L. Ye et al., “The hepatoprotective effects of Herbt Tea Essences on phenanthrene-induced liver damage in mice,” Ecotoxicol. Environ. Saf., vol. 256, no. February, 2023, doi: 10.1016/j.ecoenv.2023.114899.
[2] Y. Chiu, S. Chou, C. Chiu, and C. Kao, “ScienceDirect Hepatoprotective effect of the ethanol extract of Polygonum orientale on carbon tetrachloride-induced acute liver injury in mice,” J. Food Drug Anal., vol. 26, no. 1, pp. 369–379, 2017, doi: 10.1016/j.jfda.2017.04.007.
[3] R. U. Hamzah et al., “Effect of partially purified sub-fractions of Pterocarpus mildbraedii extract on carbon tetrachloride intoxicated rats,” Integr. Med. Res., vol. 7, no. 2, pp. 149–158, 2018, doi: 10.1016/j.imr.2018.01.004.
[4] H. Zhao, B. Deng, D. Li, L. Jia, and F. Yang, “Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-?B signaling pathway,” J. Funct. Foods, vol. 95, no. June, p. 105152, 2022, doi: 10.1016/j.jff.2022.105152.
[5] P. Pan et al., “Biomedicine & Pharmacotherapy Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats,” Biomed. Pharmacother., vol. 151, no. April, p. 113133, 2022, doi: 10.1016/j.biopha.2022.113133.
[6] M. Bishnoi, K. Chopra, L. Rongzhu, and S. K. Kulkarni, “Protective effect of curcumin and its combination with piperine (bioavailability enhancer) against haloperidol-associated neurotoxicity: Cellular and neurochemical evidence,” Neurotox. Res., vol. 20, no. 3, pp. 215–225, 2011, doi: 10.1007/s12640-010-9229-4.
[7] M. K. Gupta, V. Sansare, B. Shrivastava, S. Jadhav, and P. Gurav, “Fabrication and evaluation of mannose decorated curcumin loaded nanostructured lipid carriers for hepatocyte targeting: In vivo hepatoprotective activity in Wistar rats,” Curr. Res. Pharmacol. Drug Discov., vol. 3, no. October 2021, p. 100083, 2022, doi: 10.1016/j.crphar.2022.100083.
[8] S. Roy and J. W. Rhim, “Preparation of carbohydrate-based functional composite films incorporated with curcumin,” Food Hydrocoll., vol. 98, no. July 2019, p. 105302, 2020, doi: 10.1016/j.foodhyd.2019.105302.
[9] P. Rachtanapun et al., “Characterization of chitosan film incorporated with curcumin extract,” Polymers (Basel)., vol. 13, no. 6, pp. 1–15, 2021, doi: 10.3390/polym13060963.
[10] K. H. Erna, W. X. L. Felicia, K. Rovina, J. M. Vonnie, and N. Huda, “Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat,” Carbohydr. Polym. Technol. Appl., vol. 3, no. February, p. 100189, 2022, doi: 10.1016/j.carpta.2022.100189.
[11] T. Chuacharoen and C. M. Sabliov, “Development of coating material by incorporating curcumin-loaded zein nanoparticles to maintain the quality of mango ( Mangifera indica L . cv . Nam Dokmai ),” J. Agric. Food Res., vol. 10, no. November, p. 100444, 2022, doi: 10.1016/j.jafr.2022.100444.
[12] P. Dytrych et al., “Therapeutic potential and limitations of curcumin as antimetastatic agent,” Biomed. Pharmacother., vol. 163, p. 114758, 2023, doi: https://doi.org/10.1016/j.biopha.2023.114758.
[13] N. C. Freitas e Silva-Santana et al., “Turmeric supplementation with piperine is more effective than turmeric alone in attenuating oxidative stress and inflammation in hemodialysis patients: A randomized, double-blind clinical trial,” Free Radic. Biol. Med., vol. 193, pp. 648–655, 2022, doi: https://doi.org/10.1016/j.freeradbiomed.2022.11.008.
[14] Z. Liu, J. D. Smart, and A. S. Pannala, “Recent developments in formulation design for improving oral bioavailability of curcumin: A review,” J. Drug Deliv. Sci. Technol., vol. 60, no. July, p. 102082, 2020, doi: 10.1016/j.jddst.2020.102082.
[15] M. Saidurrahman, M. Mujahid, M. A. Siddiqui, B. Alsuwayt, and M. A. Rahman, “Evaluation of hepatoprotective activity of ethanolic extract of Pterocarpus marsupium Roxb. leaves against paracetamol-induced liver damage via reduction of oxidative stress,” Phytomedicine Plus, vol. 2, no. 3, p. 100311, 2022, doi: 10.1016/j.phyplu.2022.100311.
[16] Departemen Kesehatan Republik Indonesia, Farmakope Herbal Indonesia Edisi II. 2017.
[17] I. T. Henneh et al., “Ziziphus abyssinica root bark extract ameliorates paracetamol-induced liver toxicity in rats possibly via the attenuation of oxidative stress,” Toxicol. Reports, vol. 9, no. August, pp. 1929–1937, 2022, doi: 10.1016/j.toxrep.2022.10.012.
[18] F. Feki et al., “A jojoba (Simmondsia chinensis) seed cake extracts express hepatoprotective activity against paracetamol-induced toxicity in rats,” Biomed. Pharmacother., vol. 153, p. 113371, 2022, doi: 10.1016/j.biopha.2022.113371.
[19] N. Nazir et al., “Phytochemical profiling and antioxidant potential of Daphne mucronata Royle and action against paracetamol-induced hepatotoxicity and nephrotoxicity in rabbits,” Saudi J. Biol. Sci., vol. 28, no. 9, pp. 5290–5301, 2021, doi: 10.1016/j.sjbs.2021.05.051.
[20] D. Rathee, A. Kamboj, R. K. Sachdev, and S. Sidhu, “Hepatoprotective effect of Aegle marmelos augmented with piperine co-administration in paracetamol model,” Rev. Bras. Farmacogn., vol. 28, no. 1, pp. 65–72, 2018, doi: 10.1016/j.bjp.2017.11.003.
[21] S. Chen et al., “Structural characterization and hepatoprotective activity of an acidic polysaccharide from Ganoderma lucidum,” Food Chem. X, vol. 13, no. January, p. 100204, 2022, doi: 10.1016/j.fochx.2022.100204.
[22] X. Feng et al., “Assessment of hepatoprotective potential of Radix Fici Hirtae on alcohol-induced liver injury in Kunming mice,” Biochem. Biophys. Reports, vol. 16, no. October, pp. 69–73, 2018, doi: 10.1016/j.bbrep.2018.10.003.
[23] A. Akter, R. Roy, and M. A. Basher, “In-vivo hepatoprotective and hypoglycemic effects of methanolic extract of Schumannianthus dichotomus rhizome,” Phytomedicine Plus, vol. 3, no. 3, p. 100459, 2023, doi: 10.1016/j.phyplu.2023.100459.
[24] J. R. Villanueva-Toledo et al., “Hepatoprotective effect of an ethanol extract of Tradescantia pallida against CCl4-induced liver damage in rats,” South African J. Bot., vol. 135, pp. 444–450, 2020, doi: 10.1016/j.sajb.2020.09.031.
[25] F. K. El-Baz, A. A. A. Salama, and R. A. Hussein, “Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats,” Toxicol. Reports, vol. 7, no. September 2019, pp. 36–45, 2020, doi: 10.1016/j.toxrep.2019.10.017.
[26] W. N. Abood et al., “Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver cirrhosis in rats,” J. Funct. Foods, vol. 74, no. September, p. 104200, 2020, doi: 10.1016/j.jff.2020.104200.
[27] I. M. Merdana, I. M. Kardena, K. Budiasa, and I. M. D. Gunawan, “Histopathological Structure of White Rats Liver After Giving Ant Nest Extract Due To Induced Paracetamol Toxic Dose,” Bul. Vet. Udayana, no. 21, p. 14, 2019, doi: 10.24843/bulvet.2019.v11.i01.p03.
[28] R. N. Mitchell, Buku Saku Dasar Patologi Penyakit Robbins dan Contrcen. Samarinda: EGC, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sains dan Kesehatan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.