Karakteristik Selulosa Mikrokristal dan Proses Delignifikasi pada Isolasinya dari Berbagai Sumber Limbah Alami

Characteristics of Microcrystalline Cellulose and Delignification Process on Its Isolation from Various Natural Waste Sources

Authors

  • Fikri Alatas Kelompok Keilmuan Farmasetika dan Teknologi Farmasi, Fakultas Farmasi Universitas Jenderal Achmad Yani, Cimahi, Indonesia https://orcid.org/0000-0002-8547-0524
  • Setia Permana Kelompok Keilmuan Farmasetika dan Teknologi Farmasi, Fakultas Farmasi Universitas Jenderal Achmad Yani, Cimahi, Indonesia & PT. Sinkona Indonesia Lestari, Ciater-Subang, Indonesia

DOI:

https://doi.org/10.25026/jsk.v6i5.2005

Abstract

The use of microcrystalline cellulose in the pharmaceutical field is generally used as an excipient in tablet dosage forms. Microcrystalline cellulose is produced from the process of isolating alpha cellulose from various natural wastes through several stages of the process. One of the stages of the isolation process is the separation of lignin from cellulose or known as the delignification process which is the most difficult process stage. This literature review aims to determine the characteristics of microcrystalline cellulose and its isolation process from various natural wastes. This review article was written based on 38 national and international journal articles published in the last 10 years (2013-2023) after being screened based on inclusion and exclusion criteria. Microcrystalline cellulose can be analyzed using the Fourier transform infrared (FTIR) method, powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and differential scanning calorimetry (DSC) and the results of the analysis can show identity, purity, crystallinity index, and morphology. Most alkali treatments in the delignification process use sodium hydroxide and/or sodium sulfite followed by a bleaching process with sodium chlorite or hydroxy peroxide depending on the part of the plant. The delignification process for soft plant parts, such as leaves and fruit skin, generally uses sodium hydroxide and sodium chlorite solutions, while for harder plant parts, for example stems, sodium hydroxide and sodium sulfite are usually used.

Keywords:          microcrystalline cellulose, cellulose sources, characteristics, delignification

 

Abstrak

Pemanfaatan selulosa mikrokristal dalam bidang farmasi umumnya digunakan sebagai eksipien dalam bentuk sediaan tablet. Selulosa mikrokristal dihasilkan dari proses isolasi selulosa alfa berbagai limbah alami melalui beberapa tahapan proses. Salah satu tahap proses isolasi adalah pemisahan lignin dari selulosa atau delignifikasi yang merupakan tahapan proses yang paling sulit. Kajian literatur ini bertujuan untuk mengetahui karakteristik khas selulosa mikrokristal dan proses delignifikasi dari berbagai limbah alami. Artikel review ini ditulis bersumber dari 38 artikel jurnal nasional dan internasional yang terbit pada 10 tahun terakhir (2013-2023) setelah dilakukan penapisan berdasarkan kriteria inklusi dan eksklusi. Selulosa mikrokristal dapat dianalisis dengan metode Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), dan differential scanning calorimetry (DSC) dan hasil analisis tersebut bisa menunjukkan identitas, kemurnian, indeks kristalinitas, dan morfologinya. Sebagian besar perlakuan alkali pada proses delignifikasi menggunakan natrium hidroksida dan atau natrium sulfit yang dilanjutkan dengan proses pemutihan dengan natrium klorit atau hidroksi peroksida yang bergantung pada bagian tanamannya. Proses delignifikasi di bagian tanaman yang lunak, seperti daun dan kulit buah umumnya menggunakan larutan natrium hidroksida dan natrium klorit, sementara untuk bagian tanaman yang lebih keras, seperti batang menggunakan natrium hidroksida dan natrium sulfit.

Kata Kunci:         selulosa mikrokristal, sumber selulosa, karakteristik, isolasi, delignifikasi

References

[1] Adiyati Rum, I., Lestari, H., Santoso, R., 2018. Preparasi dan karakterisasi selulosa mikrokristal dari nata de pina sebagai bahan eksipien dalam sediaan tablet. Journal of Pharmacopolium 1(3): 149–61.

[2] Ivanovic, J., Djuriš, J., Medarevic, D., 2020. Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press 28: 710–8, Doi: 10.1016/j.jsps.2020.04.013.

[3] Agustin, N., Abdassah, M., 2021. Isolation and characterization of microcrystalline cellulose from pineapple (Ananas comosus (L.) Merr). Pharmaceutical Journal of Indonesia 18(01): 111–21.

[4] Ramos, M., Laveriano, E., Sebasti, L.S., Perez, M., Jim, A., Vallverdú-queralt, A., et al., 2023. Rice straw as a valuable source of cellulose and polyphenols?: Applications in the food industry. Trends in Food Science & Technology 131(April 2022): 14–27, Doi: 10.1016/j.tifs.2022.11.020.

[5] Kale, R.D., Shobha, P., Vikrant, B., 2018. Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose. Journal of Polymers and the Environment 26(1): 355–64, Doi: 10.1007/s10924-017-0936-2.

[6] Bauli, C.R., Rocha, D.B., Oliveira, S.A. De., Rosa, D.S., 2019. Cellulose nanostructures from wood waste with low input consumption. Journal of Cleaner Production 211: 408–16, Doi: 10.1016/j.jclepro.2018.11.099.

[7] Lismeri, L., Darni, Y., Iqbal, M., S, M.D., 2017. Isolasi mikrofibril selulosa dengan pretreatment alkali dari limbah batang pisang. Prosiding Dalam Rangka Seminar Nasional Riset Industri Ke 3 (September): 40–5.

[8] Rewini, W., Kimia, K.J., 2017. Kajian tentang isolasi selulosa mikrokristalin (sm) dari limbah tongkol jagung. Jurnal Entropi 12(1): 105–8.

[9] Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A., et al., 2016. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules 93: 789–804, Doi: 10.1016/j.ijbiomac.2016.09.056.

[10] Pratiwi, Y., Lestari, I., Falya, Y., Chasanah, U., Kusumo, D.W., 2022. Mikrokristalin selulosa dari limbah kulit jeruk baby ( Citrus sinensis ) 26(3): 119–23, Doi: 10.20956/mff.v26i3.22070.

[11] Anggraini, D., Susanti, E., Nurizky, S., 2018. Preparasi dan karakterisasi mikrokristalin selulosa daun nenas(Ananas comusus L. Merr). Jurnal Katalisator 3(2): 135–44.

[12] Thoorens, G., Krier, F., Leclercq, B., Carlin, B., Evrard, B., 2014. Microcrystalline cellulose, a direct compression binder in a quality by design environment - A review. International Journal of Pharmaceutics 473(1–2): 64–72, Doi: 10.1016/j.ijpharm.2014.06.055.

[13] Suksaeree, J., Monton, C., Chankana, N., Charoenchai, L., 2023. Microcrystalline cellulose promotes superior direct compressed Boesenbergia rotunda (L.) Mansf. extract tablet properties to spray-dried rice starch and spray-dried lactose. Arab Journal of Basic and Applied Sciences 30(1): 13–25, Doi: 10.1080/25765299.2022.2153527.

[14] Bala, R., Khanna, S., Pawar, P., 2013. Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology. Journal of Advanced Pharmaceutical Technology and Research 4(3): 151–9, Doi: 10.4103/2231-4040.116785.

[15] Schuh, V., Allard, K., Herrmann, K., Gibis, M., Kohlus, R., Weiss, J., 2013. Impact of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) on functional characteristics of emulsified sausages. Meat Science 93(2): 240–7, Doi: 10.1016/j.meatsci.2012.08.025.

[16] Azum, N., Jawaid, M., Kian, L.K., Khan, A., Alotaibi, M.M., 2021. Extraction of microcrystalline cellulose from washingtonia fibre and its characterization. Polymers 13(18): 1–11, Doi: 10.3390/polym13183030.

[17] Ningsi, S., Nining Iklasita, Munifah Wahyuddin, & S.S., 2020. Karakterisasi mikrokristalin selulosa dari kulit jagung pulut (Zea mays L. Var Ceratina Kulesh). Jurnal Kesehatan (December): 53–9.

[18] Fouad, H., Kian, L.K., Jawaid, M., Alotaibi, M.D., Alothman, O.Y., Hashem, M., 2020. Characterization of microcrystalline cellulose isolated from conocarpus fiber. Polymers 12(12): 1–11, Doi: 10.3390/polym12122926.

[19] Rahman, N.H.A., Chieng, B.W., Ibrahim, N.A., Rahman, N.A., 2017. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers 9(11): 1–11, Doi: 10.3390/polym9110588.

[20] Silitonga, N., Tarigan, N., Saragih, G., 2019. Pengaruh konsentrasi NaOH pada karakteristik ?-selulosa dari pelepah kelapa sawit. Jurnal Ready Star 2(1): 103–8.

[21] Nurhayati, N., Kusumawati, R., 2014. Sintesis selulosa asetat dari limbah pengolahan agar. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan 9(2): 97, Doi: 10.15578/jpbkp.v9i2.103.

[22] Ardiana, C., 2019. Isolasi dan karakterisasi selulosa mikrokristal dari nata de coco untuk bahan pembuatan tablet. Jurnal Life Science 1(2): 1–7, Doi: 10.31980/jls.v1i2.681.

[23] Suryadi, H., Sutriyo., Angeline, M., Murti, M.W., 2018. Characterization of microcrystalline cellulose obtained from enzymatic hydrolysis of alpha-cellulose and its application. Journal of Young Pharmacists 10(2): s87–92, Doi: 10.5530/jyp.2018.2s.17.

[24] Choi, M., Kang, Y.-R., Lim, I.-S., Chang, Y.H., 2018. Structural characterization of cellulose obtained from extraction wastes of graviola (Annona muricata) leaf. Preventive Nutrition and Food Science 23(2): 166–70, Doi: 10.3746/pnf.2018.23.2.166.

[25] Akinjokun, A.I., Petrik, L.F., Ogunfowokan, A.O., Ajao, J., Ojumu, T.V., 2021. Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes. Heliyon 7(4): e06680, Doi: 10.1016/j.heliyon.2021.e06680.

[26] Istinanda, R., Harlia, H., Alimuddin, A.H., 2018. Sintesis dan karakterisasi komposit zeolit-selulosa dari serat daun nanas (Ananas comosus) sebagai bahan pengisi cat tembok emulsi akrilik. Jurnal Kimia Khatulistiwa 7(3): 1–9.

[27] Gichuki, J., Kareru, P.G., Gachanja, A.N., Ngamau, C., 2022. Characteristics of Microcrystalline Cellulose from Coir Fibers. Journal of Natural Fibers 19(3): 915–30, Doi: 10.1080/15440478.2020.1764441.

[28] Pratiwi, Y., Lestari, I., Falya, Y., Chasanah, U., Kusumo, D.W., 2022. Isolasi ?-selulosa, pembuatan & karakterisasi mikrokristalin selulosa (MCC) dari limbah kulit jeruk baby (Citrus sinensis). Majalah Farmasi Dan Farmakologi 26(3): 119–23, Doi: 10.20956/mff.v26i3.22070.

[29] Diana, N.E., Septiadi, D., Usman, A., 2019. The effects of temperature on alpha-cellulose content and extraction result of tobacco stem. Journal of Physics: Conference Series PAPER 1280: 1–6, Doi: 10.1088/1742-6596/1280/2/022012.

[30] Rivai, H., Hamdani, A.S., Ramdani, R., Lalfari, R.S., Andayani, R., Armin, F., et al., 2018. Production and characterization of alpha cellulose derived from rice straw (Oryza sativa L.). International Journal of Pharmaceutical Sciences Review and Research 52(1): 45–8.

[31] Galiwango, E., Abdel Rahman, N.S., Al-Marzouqi, A.H., Abu-Omar, M.M., Khaleel, A.A., 2019. Isolation and characterization of cellulose and ?-cellulose from date palm biomass waste. Heliyon 5(12): e02937, Doi: 10.1016/j.heliyon.2019.e02937.

[32] Nawangsari, D., 2019. Isolasi dan karakterisasi selulosa mikrokristal dari ampas tebu ( Saccharum Officinarum L .). Pharmacon: Jurnal Farmasi Indonesia 16(2): 67–72.

[33] Thakur, V.K., Thakur, M.K., 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109: 102–17, Doi: 10.1016/j.carbpol.2014.03.039.

[34] Mohamad Haafiz, M.K., Eichhorn, S.J., Hassan, A., Jawaid, M., 2013. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers 93(2): 628–34, Doi: 10.1016/j.carbpol.2013.01.035.

[35] S., S., Shabbirahmed, A.M., Haldar, D., Patel, A.K., Singhania, R.R., 2023. Influence of reaction conditions on synthesis and applications of lignin nanoparticles derived from agricultural wastes. Environmental Technology and Innovation 31: 103163, Doi: 10.1016/j.eti.2023.103163.

[36] Tribot, A., Amer, G., Abdou Alio, M., de Baynast, H., Delattre, C., Pons, A., et al., 2019. Wood-lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal 112(October 2018): 228–40, Doi: 10.1016/j.eurpolymj.2019.01.007.

[37] Lismeri, L., 2020. Preparasi dan karakterisasi mikrokristalin selulosa dari limbah ubi kayu. Jurnal Teknologi Dan Inovasi Industri (JTII) 1(1), Doi: 10.23960/jtii.v1i1.11.

[38] Coniwanti, P., Dani, M., Daulay, Z.S., 2015. Pembuatan natrium karboksimetil selulosa (Na-CMC) dari selulosa limbah kulit kacang tanah (Arachis hypogea l.). Jurnal Teknik Kimia 21(4): 58–65.

[39] Kian, L.K., Jawaid, M., Ariffin, H., Alothman, O.Y., 2017. Isolation and characterization of microcrystalline cellulose from roselle fibers. International Journal of Biological Macromolecules 103: 931–40, Doi: 10.1016/j.ijbiomac.2017.05.135.

[40] Kian, L.K., Saba, N., Jawaid, M., Fouad, H., 2020. Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules 156: 347–53, Doi: 10.1016/j.ijbiomac.2020.04.015.

[41] Chieng, B.W., Lee, S.H., Ibrahim, N.A., Then, Y.Y., Loo, Y.Y., 2017. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9(8): 1–11, Doi: 10.3390/polym9080355.

[42] Amalia, A.R., Kumara, R.F., Putri, N.P., 2019. Manufacturing of bioplastics from cellulose empty fruit bunches waste with addition of glycerol as plasticizer. Konversi 8(2): 69–76, Doi: 10.20527/k.v8i2.6839.

Downloads

Published

2024-10-31

How to Cite

Alatas, F., & Permana, S. (2024). Karakteristik Selulosa Mikrokristal dan Proses Delignifikasi pada Isolasinya dari Berbagai Sumber Limbah Alami: Characteristics of Microcrystalline Cellulose and Delignification Process on Its Isolation from Various Natural Waste Sources. Jurnal Sains Dan Kesehatan, 6(5), 797–807. https://doi.org/10.25026/jsk.v6i5.2005